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PREFACE 
 

The German-Greek-Polish Symposia are organized regularly every three years in one 

of the participating countries. These special meetings were initiated by Profs. 

R. Bogacz, A. Kounadis and O. Mahrenholtz in 1991 and continued after 2000 by Profs 

J.T. Katsikadelis, R. Kienzler and W. Kurnik. They have a more than 25 years old 
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 1st, September 1991 in Pułtusk, Poland 
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 3rd, September 1998 in Xanthi, Greece 

 4th, September 2001 in Pułtusk, Poland 

 5th, September 2004 in Bad Honnef, Germany 

 6th, September 2007 in Alexandroupolis, Greece. 

 7th, September 2010 in Poznań, Poland 

 8th, September 2013 in Goslar, Germany 

The present German-Greek-Polish Symposium is the 9th of the series. It is locally 

organized by the Technical University of Crete and takes place in Kolympari, Chania, 

Greece, hosted by the Orthodox Academy of Crete www.oac.gr. 

The fundamental purpose of these meetings has been to bring together about 15 

expert participants from Germany, Greece and Poland each, especially young 

researchers, and discuss the latest advances in the wide field of Applied Mechanics. 

Throughout, the presentations attempt to achieve the highest scientific level and the 

Symposia have been very successful both in terms of advancing scientific progress 

and furthering friendship and personal interaction among the participants. 

Distinguished people of mechanics have participated in the Symposia. Most of the 

presented contributions at the Symposium are published in special issues of the AAM. 

Prof. J.T. Katsikadelis, PhD, Dr. Eng, Dr. h.c. 
Chairman of the Symposium 

Prof. G.E. Stavroulakis, Dr. Ing. Hab. Prof. h.c. 
Chairman of the Local Organizing Committee 

 
Athens, August 2016 

 

http://www.oac.gr/


 

X 

 

 

 

9th German-Greek-Polish Symposium 

Recent Advances in Mechanics 

September 4-9, 2016, Kolympari, Crete, Greece 

 

 

GENERAL INFORMATION 
 

 

Conference Organization 

Prof. John T. Katsikadelis,  
Institute of Structural Analysis & Aseismic Research 

School of Civil Engineering 

National Technical University of Athens 

GR-157 73 Zografou, Athens, Greece 

Tel: +30 210 7721652 

E-mail: jkats@central.ntua.gr 

 

Prof. Georgios E. Stavroulakis 

Technical University of Crete 

School of Production Engineering and Management 

University Campus, Kounoupidiana 

R-73100 Chania, Greece 

Tel: +30 2821037418 

E-mail: gestavr@dpem.tuc.gr 

 

Secretariat: 

Mrs. Maria Bakatsaki 

Institute of Computational Mechanics and Optimization 

School of Production Engineering and Management 

Technical University of Crete 

University Campus, Kounoupidiana 

GR-73100 Chania, Greece 

Tel. +30-28210-37241 Fax: +30-28210-37486 

email: 9ggp@isc.tuc.gr 
 

mailto:9ggp@isc.tuc.gr


 

XI 

 

 

9th German-Greek-Polish Symposium 

Recent Advances in Mechanics 

September 4-9, 2016, Kolympari, Crete, Greece 

 
 
 

PROGRAMME OVERVIEW 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

XII 

 

 
 



9th German-Greek-Polish Symposium 
Recent Advances in Mechanics  
September 04-09, 2016 
Kolympari, Chania, GREECE 

GENERATION OF NEW GRAPHENE-LIKE MATERIALS 
Prof. T. Burczyński1, Dr A. Mrozek2, Dr hab. W.Kuś3

1Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland 
2AGH University of Science and Technology, Cracow, Poland 

3Institute of Computational Mechanics and Engineering, Silesian University of Technology, 
Gliwice, Poland 

Abstract: The paper describes an application of a hybrid algorithm to optimal searching for new, stable atomic 
arrangements of two-dimensional graphene-like carbon lattices. Interactions between atoms are modeled using the AIREBO 
potential, especially developed for carbon and hydrocarbon materials. Validation of the obtained results and examples 
of the models of the new grapheme-like materials are presented. 

1. Introduction
Carbon atoms form various types of bondings and spatial configurations. This ability is determined by 

the atoms’ hybridization states, which depend on their particular electronic configuration. This phenomenon 
is responsible for the existence of many different allotropes of the carbon. Graphene-like materials can be 
classified as periodic, flat atomic networks, made of stable configurations of carbon atoms in certain 
hybridization states. Since the stable configurations of atoms correspond to the global minima on the Potential 
Energy Surface (PES), such a task can be considered as a special optimization problem. However, the number 
of local minima increases almost exponentially with the number of atoms in the structure, thus searching for 
the global minimum on a PES became a non-trivial, NP-hard problem. 

2. Hybrid algorithm
The hybrid algorithm combines the parallel evolutionary algorithm prepared by the authors, and the 

classical conjugated-gradient minimization of the total potential energy of the optimized atomic system. Since 
the processed structure is considered as an atomic model, the behavior and the potential energy of carbon atoms 
are determined using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential 
developed for molecular dynamics simulations of hydrocarbons [2]. 

The fitness function is formulated as the total potential energy of the considered atomic system, i.e., the 
total sum  of all potential energies of particular atomic interactions. The AIREBO potential in the following 
form is used in computation: 

where:   EREBO  corresponds to the short range interactions between covalently bonded pair of atoms, ELJ 

is responsible for the long range interactions and is computed in a simplified way, using the Lennard-Jones-
like function with additional distance-dependent switching functions and ETORSIONAL is torsional potential which 
depends on the neighboring atom’s dihedral angles. Detailed description of the proposed algorithm is presented 
in [1]. 

3. New graphene-like materials
In order to validate the accuracy of the results, certain arrangements of carbon atoms already known from 

literature have been examined, e.g. the supergraphene (triclinic unit cell containing 8 carbon atoms) and the 
graphyne (triclinic unit cell containing 12 carbon atoms). Since all the tests yield promising results, the proposed 
optimization algorithm has been applied to search for new stable configurations of a given number of carbon 
atoms in a unit cell of given size and periodic boundaries [1]. For eight carbon atoms placed in the 4 Å ×7 Å 
rectangular unit cell obtained a stable flat network named X (Figure 1A) and for the same number of carbon atoms 
placed in the rectangular unit cell 4 Å ×6 Å obtained a stable flat network named Y (Figure 1B). 

(1)
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GENERATION OF NEW GRAPHENE-LIKE MATERIALS 

Figure 1: Layout of new stable carbon networks X (A) and Y (B) found by 
the hybrid algorithm 

4. Conclusions
The main purpose of this paper was to present the hybrid parallel algorithm, applied to searching 

for new 2D graphene-like materials. The proposed method is able to find already-known structures like 
supergraphene and graphyne as well as new stable ones, named X and Y. Examples performed for new 
carbon networks clearly show that the final form and properties of optimized structures depend on the assumed 
size, type and atomic density of the unit cell. Thus, the considered topology optimization problem can be 
reformulated and applied to searching for a molecular structure with predefined material properties, not 
only in the case of carbon-based structures. 

5. References

[1]    Mrozek A., Kuś W., Burczyński T., “Nano level optimization of graphene allotropes by means of 
hybrid parallel evolutionary algorithm”, Computational Material Science, Vol 106, 2015, pp. 161-169. 

[2]  Stuart S.J., Tutein J.A., Harsison A., “ A reactive potential for hydracarbons with intermolecular 
interactions”. J. Chemical Physics, Vol. 112, 2000, pp. 6472- 6486. 
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ON DISPLACEMENTS AND STRESSES IN A SECOND-ORDER CONSISTENT 
PLATE THEORY 

Prof. Dr.-Ing. R. Kienzler1, Dr.-Ing. P. Schneider1 
1University of Bremen, 

Bremen Institute for Mechanical Engineering, Germany 
 

 
Abstract: Using the uniform-approximation technique in combination with the pseudo-reduction method, a consistent 
second-order plate theory has been derived, which does not rely on any a priori assumptions nor on shear- or thickness-
strain-correction factors. In the talk, it is shown how the displacement and stress distributions can be calculated once the 
governing PDEs have been solved  
 
1. Consistent second-order linear plate theory 
 

Plates belong to the family of thin plane structures. The characteristic dimension in thickness direction h  is 
much smaller than the characteristic in-plane dimension a . Thus the plate parameter 2 2 212c h a=  appears as a 
small quantity, i.e., 2 1c  . The derivation of a consistent linear, second-order plate theory has been reported in 
several papers, cf. e.g., Schneider et al [1]. In the following, we concentrate on plates with constant thickness 
made of an isotropic material (Young’s E , Poisson’s ratio v ). In extension of these earlier investigations, we 
introduce here energetic averages w  and αψ  of the transverse displacement w  and the slopes αψ , 
respectively, of the plate middle surface, as 

 

 
2 2 4 6

2 2 4 2 6
, , 3 ,

3 ( ),
10 1

3 8 6 ( )
10 1 5

vc w c w c w O c
v

vc c w c w c O c
vα α α αβ βψ ε ψ

= + ∆ +
−

+
= − − ∆ − +

−





 (1) 

 
( ∆ is the two-dimensional Laplace operator, ,11 ,22() () ()∆ = + , and 3αβε  is the completely screw-symmetric, third-
order permutation tensor). The quantity ψ is defined as 2,1 1,2 αψ ψ ψ ψ= −  rot  and may be regarded as a measure 
of the transverse-shear deformation. This ψ  is next to w  one of our two main variables which are governed 
(after pseudo reduction) by two main PDEs 
 

 

3
2 6

2 2 6

6 2 ( ),
5 1

6 0 ( ),
5

a vw P c P O c
K v

c c O cψ ψ

− ∆∆ = − ∆ + − 
 − ∆ = + 
 



 (2) 

 
K  is the classical plate stiffness 3 212(1 )= −K Eh v  and P is the transverse load applied through the upper and 
lower plate faces 3( 2 )= ±x h a . 

The stress resultants are calculated as bending moments ( αβδ Kronecker’s tensor of unity) and transverse 
shear forces, respectively, via 
 
 

 

( ), ,

2 2 2 6
3 , 3 , ,

2 6
, 3 , ,2

121 (1 )
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3 6(1 ) ( ) ( ),
5 5 1
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KM v w vw
a v

vv c c a P O c
v

K vQ w v c aP O c
a v
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β β βγ γ β
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 (3) 

 
Higher-order stress resultants are also involved and calculated but turn out to be expressible as linear 

combinations of the classical stress resultants. 
 

3



ON DISPLACEMENTS AND STRESSES IN A SECOND ORDER CONSISTENT PLATE THEORY 

Finally, the boundary conditions are given by 

 
* *

* *

or ,
or ,

= =
= =









M n M n
Q n Q n w w
αβ α αβ α Γ β β Γ

α α α α Γ Γ

ψ ψ
 (4) 

 
where *Mαβ  and *Qα  are the prescribed stress resultants and *

βψ  and *w  are the prescribed displacement 
quantities along the boundary Γ  of the mid-plane. 

 
2. Displacement and stresses 
 

With eqs. (1) - (4) the governing equations of the consistent second-order plate theory are given and can be 
solved by analytical or numerical methods. However, the stress distribution cannot be calculated, since by the 
pseudo-reduction method (cf. Schneider and Kienzler [2]) not all of the displacement coefficients are determined. 
They may be chosen a posteriori, i.e., without having any influence on the governing equations, to fulfill the 
boundary conditions along the plate faces and the local equilibrium conditions. This will be shown in the 
presentation. 
 
3. Discussion 
 

In the talk, the proposed second-order plate theory will be compared with other theories existing in the 
literature. We will assess and validate the theories of Reissner/Mindlin, Zhilin, Marguerre, Verkua, 
Ambartsumyan and Reddy. 

 
4. References 
 

[1] Schneider, P., Kienzler, R., and Böhm, M., “Modeling of consistent second-order plate theories for 
anisotropic materials”, Zeitschrift für Angewandte Mathematik und Mechanics, Vol. 94, 2013, pp. 21-42. 

 
[2] Schneider, P., and Kienzler, R., “An algorithm for automatisation of pseudo reductions of PDE systems 

arising from the uniform-approximation technique”, In H. Altenbach & V.A. Eremeyev (eds.), Shell-like 
Structures; Nonclassical theories and applications, Springer, Heidelberg, 2011, pp. 377-390. 
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NANO-SIZED HETEROGENEITIES IN A MATRIX BY BEM AND FEM  
 

Prof. G.D. Manolis1, Assoc. Prof. S.L. Parvanova2, Dipl. Ing. G.P. Vasilev2, Prof. P.S. Dineva3  
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Abstract: This work addresses the elastodynamic problem for a finite-sized, elastic solid matrix containing multiple nano-
heterogeneities of arbitrary shape, number and geometric configuration. The problem is formulated under plane strain 
conditions under time-harmonic motions. We evaluate the non-uniform stress and strain fields that develop in the 
heterogeneous solid matrix for dynamic loads along the matrix boundaries.  

1. Introduction 
 

The mechanical model used here is based on a combination of classical elastodynamic theory for the bulk 
solid under non-classical boundary conditions, supplemented with a localized constitutive law for the solid-
inclusion interface in the framework of the Gurtin-Murdoch [1] theory of surface elasticity. We use (a) a 2D 
boundary element method (BEM) [2] with frequency-dependent fundamental solutions for the bulk solid and 
(b) the finite element method (FEM) software package ANSYS [3] augmented by a macro-finite element for 
representing surface effects on the contour of the nano-inclusions. The accuracy of the numerical solutions 
obtained for the dynamic stress concentration factor and for the diffracted displacement wave field is 
satisfactorily established. Then, comparison studies are conducted so to gauge the BEM and FEM 
performance. Finally, the authors acknowledge support by the Bulgarian NSF under Grant No. DFNI-I02/12. 

 
2. BEM and FEM Formulations and Numerical Results  

  
Consider wave motion in the plane for a Cartesian coordinate system, where a finite-sized, elastic and 

isotropic solid with boundary Γ  is subjected to time-harmonic loads of frequency ω, see Fig. 1(a). The solid 
matrix contains multiple nano-inclusions with boundaries n

IΓ  or nano-cavities n
HΓ , where n=1, 2,…N, of 

arbitrary shape, number, size and configuration. The material properties (Lamè constants and density) are 
denoted as , ,M M Mλ µ ρ  for the solid matrix and , , ,, ,I n I n I nλ µ ρ  for the n-th inclusion. Furthermore, the 

displacement vector ( )1 2, ,iu x x ω , i, j=1, 2, the stresses ijσ  and the traction vector i ij jt nσ= , ( jn : outward 
pointing unit normal vector) satisfy the equations of motion in the bulk solid: 

( )2 , ,
, , ,0; ( ); ( );M M I n I n

ij i j ij ijkl k l ijkl k l ijkl ij kl ik jl il jku C u matrix C u inclus Cσ ρω σ λδ δ µ δ δ δ δ+ = = = + +  (1) 

Following surface elasticity theory, the n-th interface between a nano-inclusion and the matrix is regarded as a 
thin material film with mechanical properties , ,,S n S nλ µ  and surface tension 0,nτ . The constitutive law along 
interfaces between matrix and inclusion for the localized stress and strain is  

                                         
( )0 2sur s s surσ τ µ λ ε= + +    (2) 

The boundary conditions along M
IΓ  are (a) continuity of the displacements as  I M

i i iu u u= = and (b) interface 
equilibrium conditions along the arc length M

Is ≡ Γ  written in terms of the local normal and tangential ( , )n t  
coordinates. These lead to the following relation between tractions along any interface from the side of the 
heterogeneity I

it  and from the side of the surrounding matrix M
it  : 

                                          k

sur
k

sur
k

k
MI

MI

u
u

tt
tt









+=








+
+

2

1

22

11 Tf   (3) 

This relation is defined for traction matrix sur
kT  and the surface force vector sur

kf  .  The BVP defined above can 
be reformulated as a BEM solution [2] using a set of integral equations along all boundaries based on the 
Betti’s reciprocity theorem, plus a set of frequency-dependent fundamental solutions for in-plane wave motion. 
Surface effects given by Eq. (3) are then introduced at the boundaries. For the FEM formulation, the ANSYS 
[3] environment has user-programmable features capabilities, which allow for the incorporation of type of 
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element developed outside the program. Thus, surface effects are implemented by conversion of the Tsur matrix 
into a single macro-FE, which is attached along the contact inclusion-matrix interface.  

 

FIGURE 1: a) Three cavities in a square matrix; (b) normalized hoop stresses at the central and left 
cavities;  normalized displacement amplitudes for (c) the central and (d) the left cavity 

Consider three circular cavities embedded in a square solid matrix, see Fig. 1(a). The matrix is subjected 
tensile forces 0σ  applied horizontally. The cavity diameters are 02d a=  the size of the square plate is 10d, and 
interface effects are measured by parameter ( )0/ 2 0.5S Ms K aµ= = . Damping is 5% and Poisson’s ratio is 
0.26. Rigid body motion is avoided by constraining four edge nodes. The BEM mesh comprises 128 elements, 
32 per each cavity contour and 32 for the matrix perimeter, while the FEM mesh comprises 2100 quadratic 
elements. The results obtained are plotted in Figs. 1 (b)-(d), for a normalized frequency of 0.24Pd CωΩ = = . 

Figure 2(b) depicts the normalized hoop stresses 0/ϕϕσ σ  versus polar angle φ, while Figs. 1(c), (d) plot the 

real and imaginary displacements normalized as 0 0/ , 1, 2i Mu a iµ σ = . The percentage difference in the 
normalized displacement components obtained by the BEM and FEM solutions ranges from 0.01–1.0% for 
most cases, but can reach up to 2% for low values at the edges φ=0 and φ=π.  

3. References 

[1] Gurtin, M.E., Murdoch, A.I., "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal. 
Vol. 57, 1975, pp. 291–323.  

[2] Parvanova, S., Manolis, G.D., Dineva, P., "Wave scattering by nanoheterogeneities embedded in an 
elastic matrix via BEM", Eng. Anal. Bound. Elem. Vol. 56, 2015, pp. 57–69. 
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ON FRACTIONAL MECHANICS CONCEPTS 
Dr. Habil. Eng. W. Sumelka, Prof. T. Łodygowski,  

Poznan University of Technology, Institute of Structural Engineering, Poland 
 

Abstract: During the talk recent concepts of fractional mechanics will be summarized. Special attention will be focused on 
the original formulation by the Authors - especially the problem of the virtual boundary which appears as a result of non-
local action in the model. Some remarks on numerical implementation, as well as illustrative examples will be provided. 

1. Introduction 

Fractional Continuum Mechanics (FCM ) it is a generalisation of the Classical Continuum Mechanics 
(CCM) utilising Fractional Calculus (FC) (the branch of mathematical analysis which deals with differential 
equations of arbitrary order [6]). The first concepts in this subject are these proposed by Klimek [4], Lazopoulos 
[5], equivalent concepts of Atanackovic et al. [1] and Carpinteri et al. [2], or finally the one by Drapaca et al. 
[3]. It is important, that except the concept presented in [3], previous one were defined for 1D problems and 
small strains. Of fundamental meaning is also the fact that these authors consider different physical units of 
fractional deformation e.g. in [4, 1, 2] we have [𝑚1−𝛼], in [5] [𝑚−𝛼], or in [3] [𝑚3− 𝛼1𝑘−𝛼2𝑘−𝛼3𝑘] k = 1; 2; 3 for 
strain tensor components, where m denotes meter, and the parameter α is in general different then 1. 

In the paper [8] different concept of FCM was presented. In this version of FCM the fractional strain is 
without physical unit, as in the CCM, and the non-local action bases on the length scale parameter which is 
given explicitly and is simultaneously related to the terminals of fractional differential operator. Furthermore, 
this  formulation is stated for 3D problems and finite deformations [7,9]. Recently, it was shown [10], that this 
concept, is able to mimic the behaviour of micro-beams made of the polymer SU-8. 

During the talk some details about the problem of the virtual boundary, which appears as a result of non-
local action in the model, will be discussed. Crucial remarks on numerical implementation will be stated, as well 
as illustrative examples will be provided (cf. Fig. 1). 

 
FIGURE 1: Displacement (U) in a 1D fractional body (L) (for length scale l=10%L and different orders α)  

for three different concepts of treating virtual points outside the body (Types I, II and III) - fixed ends 
(U(x=0)= U(x=L)=0), under body load (b=0.1).  
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ON A CONSISTENT APPLICATION OF NEWTON’S LAW TO MECHANICAL 
SYSTEMS WITH MOTION CONSTRAINTS 

S. Natsiavas, E. Paraskevopoulos 
Department of Mechanical Engineering, Aristotle University, 54 124 Thessaloniki, Greece 

Abstract: This study is focused on a class of discrete mechanical systems subject to equality motion constraints involving 
time and acatastatic terms. In addition, their original configuration manifold possesses time dependent geometric 
properties. The emphasis is placed on a proper application of Newton’s law of motion. The final set of equations of motion 
appears as a system of second order ordinary differential equations. 

1. Introduction 
Research on the dynamics of mechanical systems subject to motion constraints is a traditional and quite 

favorable topic among researchers with different backgrounds [1-3]. This is in part due to the fact that this area, 
as seen under the prism of analytical mechanics, is still challenging and several theoretical aspects related to it 
remain unexplored and are amenable to improvement, despite the long tradition on the subject. Another driving 
factor is that a better understanding of the fundamentals in this area provides a stronger foundation and offers 
substantial help in the efforts to solve difficult engineering problems by deriving and employing new, more 
advanced, accurate and robust numerical techniques [2]. 

Among the many beautiful theoretical subjects of Analytical Dynamics, a central place is occupied by those 
referring to the derivation and solution of the equations of motion of systems subject to time dependent equality 
constraints. Over the last decades, it has become apparent that many of the theoretical questions in this area, 
related to engineering problems, can be answered in an illustrative and complete way by employing fundamental 
concepts of differential geometry [4, 5]. Based on this observation, the main objective of this work is to use such 
concepts in order to provide a better theoretical foundation for treating a class of constrained mechanical 
systems. Specifically, the present study represents an extension of recent work of the authors on discrete 
scleronomic systems [6]. Again, the emphasis is put on interpreting and explaining several demanding theoretical 
aspects, which are of keen interest to the engineering community. In addition, the main philosophical approach 
adopted in this work is that the safest and deepest principle of Mechanics is Newton’s law of motion. 

2. Application of Newton’s law – Equations of motion 
n this work, it is assumed that the original configuration manifold possesses time dependent geometric 

properties. Moreover, the system is subject to a set of k  time dependent acatastatic motion constraints with form 

0( , , ) ( , ) ( , ) 0R R i R
iq v t a q t v a q tψ ≡ + =    ( 1, ,R k= ).  (1) 

When a constraint is holonomic, Eq. (1) can be integrated and cast in the form 
( , ) 0R q tφ = .    

The derivation of the equations of motion is based on a consistent application of Newton’s law of motion, 
similar to that performed in an earlier study [6]. One of the basic ideas in that study was to consider the 
configuration manifold M  as the total space of a fiber bundle with base space AM  and fibers consisting of the 
Cartesian product manifold 1C kM M M= × × , where the single dimensional manifolds RM , 1, ,R k= , are 
related to the action of the R -th motion constraint. After incorporating the appropriate modifications and 
omitting the details, the equations of motion can be put in the form 

0 0 0
0 0 0 00 0 0 0

0
0 0 0 00 01

( ) ( ) ( )

[( ) ],

j j k j
i j i j i k j i k j i j i i j i j

k R R R R
i i i i RR R RR RR RR

g v g g g v v g g g g v

g g f a m m c k fλ λ λ
=

+ − Λ + Λ + Λ + Λ + Λ + Λ

+ Λ + Λ − = + + + −           (2) 
where 

, ,0( ) ( ) ( )j j j
i j i j i jg v g v v g v= +    and   , ,0( ) ( ) ( )R R R R

RR RR R RRm m mλ λ λ λ= + . 

Moreover, quantities i jg  and i
jkΛ  represent components of the metric tensor and affinities, while i

Rc  and 0
i
Rc

correspond to components of special vectors, for each constraint R , satisfying the conditions 
1R i

i Ra c =    and   0 0
R i R
i Ra c a= −    ( 1, ,R k= ; 1, ,i n= )           (3) 

The convention on repeated indices does not apply to index R , while 
i j

RR RR R i j Rm g c g c≡ = ,  0 0 0 0( )i j
R R R i j R im g c g c g≡ = + ,  ,0

ii j i j
RR R R R i j Rj

f
c c c c g c

v
∂

= − −
∂

,  ,
i j

RR R i j Rk c f c= −
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,0 0 0( )i i j
R R i R i j R if c f c g c g= + + .            (4) 

A complete mathematical formulation is obtained by incorporating the k  constraint equations. In particular, a 
second order ordinary differential equation (ODE) is obtained for each holonomic constraint, with form

( ) 0R R R
RR RR RRm c kφ φ φ+ + = ,            (5) 

using geometrical arguments. Likewise, each nonholonomic constraint gives rise to a scalar ODE with form 
( ) 0R R

RR RRm cψ ψ+ = .            (6) 
Next, by introducing the matrix notation 

1( )n Tq q q= ,   1( )k Tλ λ λ= ,   1( )n Tv v v=    and   [ ]i jM g= , 
Eq. (2) can be put in the following general form 

( ( , ) ) ( , , ) ( , )[( ) ( , , )]TM q t v h q v t A q t M h tλ λ λ+ = + .            (7)

The array ( , , )h q v t  includes all the terms in Eq. (2) multiplied by the affinities or originating from the 

components 0ig  of the metric on the event manifold M , together with the applied forces if . Likewise, the 

elements of the diagonal matrix 11( )kkM diag m m=  and the array 

0h C K m fλ λ≡ + + − , 

including the diagonal matrices 11( )kkC diag c c=  and 11( )kkK diag k k=  and the arrays 

0 10 0( )T
km m m=  and 1( )T

kf f f= , are determined through application of Eq. (4). Finally, when 

a standard basis is employed on both manifolds M  and RM , Eq. (7) is simplified to 

( ( , ) ) ( , , ) ( , )[( ) ( , , )]TM q t q h q q t A q t M h tλ λ λ+ = + .           (8)
In summary, Eq. (2) furnishes a set of n  second order ODEs. These equations together with Eqs. (5) and (6) 

form a set of n k+  second order ODEs in the n k+  unknown coordinates iq  and Rλ , describing the behavior 
of mechanical systems with an arbitrary (but finite) number of coordinates, possessing a time dependent original 
configuration manifold and being subject to time dependent and acatastatic motion constraints. In general, 
solution of these equations can only be achieved by numerical means, after applying appropriate methodologies 
leading to a suitable numerical discretization. For the scleronomic case, these equations are simplified 
considerably and become identical to those presented in [6]. 

The ODE form of the set of equations derived is associated with several advantages over formulations leading 
to sets of algebraic-differential equations (DAEs) [2]. It also presents advantages over previous formulations 
leading to an ODE form after elimination of the redundant coordinates or the Lagrange multipliers from the 
equations of motion, since this is done at the expense of violating the motion constraints at the lower kinematical 
levels [2]. Finally, another advantage of the present approach is that the affinities are independent and not 
derived from the metric components (i.e., the connection is not necessarily metric compatible). This allows for 
the most general and consistent derivation of the equations of motion. As a consequence, both the metric 
components and the affinities appear in Eq. (2). For instance, this is similar to the case where a body frame is 
used in expressing Euler equations for rigid body rotation [4]. For a metric compatible connection, the affinities 
can be derived in terms of the metric components and are thus be eliminated from the final set of equations of 
motion. 

References 
[1] Arnold, V.I., Mathematical Methods of Classical Mechanics, second ed. Springer-Verlag, Berlin, 1989. 

[2] Bauchau, O.A., Flexible Multibody Dynamics, Springer Science+Business Media B.V., London,  2011. 
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[4] Bloch, A.M., Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003. 
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[6] Natsiavas, S. and Paraskevopoulos, E., “A set of ordinary differential equations of motion for constrained 
mechanical systems”, Nonlinear Dyn., Vol. 79, 2015, pp. 1911-1938. 
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ON KINEMATIC AND SELF-EXCITED RAIL VEHICLE-TRACK INTERACTION 

Prof. R. Bogacz1, Prof. W. Kurnik2   

1,2Warsaw University of Technology and 1IPPT PAN, Poland 

 
Abstract: The paper contains description of certain dynamical problems connected with the self-excitation and kinematic 
excitation of rail vehicle and railway track. Some phenomena are given which may create high loads, track degradation 
and fatigue of wheelset axles. An alternative approach to rail vehicle hunting are proposed. some examples of experimental 
investigations are given which show that the dynamical load acting on the track can be much higher as the static load. 
 

1. Introduction 
 

The dynamic interaction of rail vehicles with the track is very complex, some effects are still not well 
understood even by specialists in this field. A wide palette of models is required to cover majority of aspects of 
the topic. Majority of experimental observations on real vehicle-track systems can be explained using 
theoretical foundations and numerical investigations. It may help to improve the security and comfort of travel 
and reduce maintenance costs of track. A study of some selected problems concerning the influence of system 
parameters on the stability of track-train system in relative motion will be presented. 
 

2. Hunting as classic train-track instability of subsystems in relative motion 
 

Let us consider a classic train-track system or a MAGLEV train composed of two continuous systems 
interacting by elastic or visco-elastic layers of stiffness c0. It is assumed that the train of stiffness E0I0  and mass 
density µ0 is moving with constant speed U0 along track of stiffness E1I1 and mass density µ1 laterally 
interacting with elastic Winkler foundation of stiffness c1 (Fig. 1). 

 

FIGURE 1. Model of train-track interaction 
 

Coupled linear equations of transverse vibrations of system shown in Fig. 1 are as follows: 
0)(,, 01111 =−+++ ywcwcwwIE ttxxxx µ    (1) 

0)(),,2,(, 0
2
00000 =−++−+ wycyUyUyyIE xxxtttxxxx µ   (2) 

where: x= x1, w denotes displacement of track and y is lateral displacement of train as a beam in direction of x2. 
Assuming solutions of equations of motion in the following forms of traveling waves: 

)(exp[),(          )],(exp[),( vtxikBtxyvtxikAtxw −=−=   (3) 

we obtain the characteristic equation: 
0)]()([),( 22

0
2222

0 =−−−−=Φ αααµ vvSvv    (4) 

where: 00 Uvv −= , S2=(E1I1k2+c1/k2)/µ1,  µ = µ1/µ0,α2 = c0/k2 and k denotes wave number. In the case of four 
real roots v for a real value of U0  the motion is stable, in case of two complex roots the motion is unstable 

)2,1   ,i( =±= ∗ ivvi ε . Equation (4) allows one to determine the critical speed which is the boundary at which 
periodic transverse motion appears around unstable equilibrium (like hunting with a limit cycle in the nonlinear 
case). 
 

3. Wheel-rail self-excited vibration 
 

The next case under consideration is concerned with friction-induced vibration which is found to be a 
reason of many serious damages of trains and tracks, such as corrugation, sleep waves, damages of axles as 
result of wheelset torsional self-excitation etc. (Fig. 2). The breaking of wheelset axle (2008 accident at line 
Köln-Düsseldorf) was a results of fatigue due to friction-induced vibration of wheelset-track system with 
frequency of ca 100Hz [3]. The central part of the Fig. 2 shows a relatively simple (reversible) dependences of 
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ON KINEMATIC AND SELF-EXCITED RAIL VEHICLE-TRACK INTERACTION 

the friction force fc  vs. creepage S. An another effect of friction induced vibration are slip waves occurring on 
low rail of curved track. As was pointed out experimentally by DB AG/ÖBB/SBB in Brixental and during 
simulation using the model shown on the right-hand side of Fig. 2, [4,5], that is why the intensity of vibration 
and amplitudes of wavy shape of rails corrugation decrease in the case of the vibrational external excitation. 
That is why the corrugation on steel bridges are relatively small. 

 

          
 

FIGURE 2: Scheme of wheelset-track self-excited vibration and two models of friction force vs. slip rate 
 

The model of friction used in simulation [4] was assumed as dependent on relative speed (creepage), force 
rate, time of sticking and sign of acceleration (visible on the right hand side of Fig. 2). As a supplement to the 
above study also a few kinds of kinematic excitation of rail vehicles will be presented. The source of such an 
excitation we can mention: periodically spaced corrugation, sleepers, supports (trestle bridge) and the out-of-
round railway wheels creating also structure of periodic kinematic excitation. The kinematically excited 
vibration will be solved using Floquet’s theory and a travelling wave form of solution. Contrary to a wavy form 
of interaction between two continuous systems (Fig. 1), in the case of train modeled as lumped system the 
problem of travelling and oscillating concentrated load (force) acting on a beam must be solved. Such a 
problem was formulated by Mathews in 1958 [6] who proposed the solution in the form of standing waves with 
not properly formulated boundary condition as the condition of radiation. The correct formulation of boundary 
solution by means of the group velocity of generated waves was given in 1986 by Bogacz and Krzyżyński and 
formulated also in [2]. Such a solution allow us to solve various problems of discrete dynamical interaction of 
the train as a lumped system with a track as continuous systems. As the practical example we can call the train 
- track dynamical interaction and its stability. 
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SIMULATION OF CONFINED BENDING OF CONTINUOUSLY DISLOCATED 
CRYSTALS 

Christian B. Silbermann1, Jörn Ihlemann1 
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Abstract: In this study, geometrically linear Continuum Dislocation Theory (CDT) is applied in order to investigate the 
collective behavior of dislocations during a confined bending test. The governing field equations of the CDT for dislocation 
glide in one active slip system are used. Numerical solutions of the corresponding initial boundary value problem are 
presented for the case of plane deformations using a finite difference simulation code. The resulting plastic slip field 
indicates dislocation movement from the border to the middle of the specimen. 
 
1. Introduction Governing field equations 
 

The plastic behavior of metallic crystals strongly depends on the underlying defect structure. Dislocations – 
line defects that carry plastic deformation - are of special relevance. The Continuum Dislocation Theory (CDT) 
takes them into account by considering the incompatibility of elastic (or plastic) deformation and is thus an 
appropriate means to model the behavior of continuously dislocated crystals. 
 
2. Governing field equations 
 

The kinematics of continuously distributed dislocations in the geometrically linear theory is based on the 
split of the displacement gradient into elastic and plastic parts: . The additional primary 
field  (second rank tensor) is considered a result of the collective motion of continuously distributed 
dislocations. The free energy density of the dislocated crystal depends on the thermodynamical state variables 

 (Kröner-Nye-Bilby-tensor) and  (elastic strain tensor). An additive decomposition 
 is assumed. The elastic strain energy is given by Hooke’s law:  

with the Lamé constants. The dislocation energy in case of one active slip system is given by 
 (cf. Berdichevsky [1]) where  is a dimensionless constant,  is the magnitude of 

the Burgers vector and  denotes a saturation value of the dislocation density. 
The field equations of the CDT can be obtained exploiting the laws of thermodynamics in the form of the 

Clausius-Duhem inequality. Using a dissipation potential, dissipative phenomena of dislocation motion are 
incorporated as well, e.g. dislocation motion requires exceeding a critical resolved shear stress . For single slip 
the plastic distortion is  and the resulting field equations read as: 
 

 
 

where  denotes the Nabla operator. Defining proper initial and boundary conditions, this set of partial 
differential equations can be solved. Numerical solutions of the corresponding initial boundary value problems 
are obtained for the case of plane deformations using an in-house finite difference simulation code. 

 
3. Simulation results and interpretation 
 

As an example of the effects of inhomogeneous deformation, a confined bending test is considered, i.e. 
Dirichlet boundary conditions are applied for the displacement field and free boundary conditions are assumed 
for the plastic slip field. Further, zero initial conditions are used. The material constants are given in the 
following table: 
 
 

 
 

TABLE 1: Material constants used for the numerical simulation 
 

The single crystal’s shape, the slip system and the boundary conditions for the displacement field are shown 
in Fig. 1 (left). The slip system is oriented at the angle . Plastic slip initiates when the resolved shear 
stress exceeds the value . 

 
 

 

13
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FIGURE 1: Bending test setup (left) and simulation results for the plastic slip field  (right). Dislocation movement is illustrated by 
the edge dislocation symbols (T) on the slip planes. 
 

From the resulting field  is inferred that dislocations nucleate at the upper and lower surface and then glide 
on the parallel slip planes (single slip) towards the middle line of the beam, as illustrated in Fig. 1 (right). This 
corresponds to well-known simulation results from Discrete Dislocation Dynamics. 

In the CDT, zones of high dislocation density result from plastic slip gradients  in the slip direction . 
Consequently, the simulation result suggests that dislocations moving inwards accumulate inside the beam. 
Analytical simulations from Le [2] show also a dislocation pile-up against the middle line. Further numerical 
simulation results will be presented in a forthcoming article. 
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Abstract: In the present paper, the Cyclic plasticity and Damage of Structures is investigated using Preisach model of 
hysteresis. Model is updated introducing the so called damage element in order to analyze the softening of structural 
components. Some advantages of this approach are underlined, compared with already existing procedures in the 
literature, such are the Bouc-Wen and GP (Generalized Plasticity) model.  
 
1. Introduction 
 

Civil and mechanical engineering structures are usually exposed to alternate loadings such are earthquake, 
heavy traffic etc. During this loading the stresses in structural components usually exceed elastic limit and the 
response becomes nonlinear causing plastic strains and damages. This paper intends to make comprehensive 
model to cover these phenomena including both plasticity and damage.  

 

2. The Preisach model for cyclic plasticity and damage 
 

       Damage can be included in three element unit, Šumarac and Perović [3], using brittle element with rupture 
limit YD, as shown in Fig.1b. Corresponding elastoplasic behavior is shown in Fig.1a. When tension stress in 
material reaches limit YD, complete failure of element is achieved. 

 
FIGURE 1a. Stress-strain curve for elem. in Fig.1b  FIGURE 1b. 3 element unit with brittle element  
For a system consisting of infinitely many three-element units (Fig.2.b), connected in parallel, with uniform 
yield strength distribution Ymin ≤Y≤Ymax, and 

 
with uniform damage threshold  distribution YD1 ≤ YD ≤ YDN, 

stress-strain curve is ploted in Fig. 2a. 

 

FIGURE 2a. Stress-strain curve for material in Fig.2b FIGURE 2b. Model for real material  
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CYCLIC PLASTICITY AND DAMAGE OF STRUCTURES 

3. Numerical examples 
 

In order to emphasize the advantages of the present model, in the first example, one bar (area 0.02m2) is 
subjected to cyclic loading in plastic domain, where input function, for loading, is displacement shown in 
Fig.3.a. 

 
 

FIGURE 3a. Time history of displacement          FIGURE 3b. Resulting hysteretic loops 

When displacement history function is used for loading to the maximum damage limit, complete degradation 
of both elastic and hardening modulus is occurred (Fig.3b).  
     In the second numerical example, truss structure shown in Fig.4. is subjected to cyclic loading, where time 
history functions are displacement as shown in Fig.5a. Each bar of truss structure has cross sectional area equal 
to 0.02m2.  

 
 

FIGURE 4 Truss structure 

      The typical results, stress-strain loops, are shown in Fig.5b for several bars. 

                      

FIGURE 5a. Time history of displacement          FIGURE 5b. Resulting hysteretic loops 
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Abstract: Old industrial reinforced concrete (RC) structures, which are elements of the recent Cultural Heritage, are 
considered. A numerical approach is presented for the earthquake analysis of such existing RC structures concerning the 
case of their seismic upgrading by ties elements under seismic sequences. A double discretization is applied by using the 
Finite Element Method and damage indices are computed in order to select the optimum ties version 
 
1. Extended abstract  
 

As well-known, the recent Cultural Heritage includes, besides the usual historic monumental structures 
(churches, stone bridges, old masonry buildings etc.) [1], also existing industrial buildings of reinforced 
concrete (RC), e.g. old factory premises. Non-usual extremal actions (seismic, environmental etc.) can cause 
significant strength degradation and damages on such existing RC structures, which are elements of the 
Cultural Heritage.  To overcome these strength degradation effects, various repairing and strengthening 
procedures can be used for the seismic upgrading of existing RC buildings [2-3]. Among them, cable-like 
members (ties) can be used as a first strengthening and repairing procedure [4]. 

These cable-members can undertake tension, but buckle and become slack and structurally ineffective 
when subjected to a sufficient compressive force. So, in the mathematical problem formulation, the constitutive 
relations for cable-members include also inequality conditions. Such inequality conditions govern  also the 
piece-wise linearized constitutive relations describing the non-linear behavior of the usual RC structural 
elements. Thus the problem becomes a high nonlinear one. For the strict mathematical treatment of the 
problem, the concept of variational and/or hemivariational inequalities can be used  and has been successfully 
applied [5]. As concerns the numerical treatment, non-convex optimization algorithms are generally required 
[6]. 

On the other hand, current seismic codes (e.g. EC8) suggest the exclusive adoption of the isolated and rare 
“design earthquake”, while the influence of repeated earthquake phenomena is ignored. This is a significant 
drawback for the realistic design of building structures. Despite the fact that the problem has been qualitatively 
acknowledged, few studies have been reported in the literature, especially the last years, regarding the multiple 
earthquake phenomena. 

The present study deals with a numerical approach for the earthquake analysis of Cultural Heritage 
existing RC building frames, which after their seismic assessment have to be strengthened by cable elements 
and are subjected to seismic sequences excitations. For details see [7]. The proposed method uses the finite 
element method, an incremental formulation and the Ruaumoko software.  The decision about a possible 
strengthening for an existing structural system, damaged by a seismic or environmental event, can be taken 
after an assessment realization [2-3]. This is here obtained by using a relevant evaluation of suitable damage 
indices, which are also used for the selection of the optimal ties system [7]. The applicability of the proposed 
method is verified in numerical examples, e.g. as shown in Fig. 1. The numerical results prove that the optimal 
system is that one of Fig. 1.D. 
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CULTURAL HERITAGE STRUCTURES 
 

 

 

A) 

 

 

B) 

 

C) 

 

D) 

 
FIGURE 1: Numerical example: a) The two-bays two-storey RC frame, b)  The constitutive law of the cable-

elements, c) The F2 ties-system, d) The F4 ties-system. 
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Abstract: Newton’s law of motion is derived from Kepler’s laws of planetary motion. This is achieved by applying a simple 
system identification method using numerical data from the planet’s orbits and the concepts of the derivative, differential 
equation and Leibnitz product rule for differentiation. Moreover, the employed procedure permits the evaluation of the 
standard gravitational parameter, which paves the way for establishing Newton’s law of universal gravitation. As the 
employed mathematical tools and the theory were available before 1686, we are allowed to state that the equation of motion 
could have been established from Kepler’s law of planetary motion, before Newton had published his law of motion. 

1. Introduction 
Newton’s law of motion (second law) was presented in his book “Philosophiae Naturalis Principia 
Mathematica” published on July 5 1686 [1]. This law in the original Latin text reads [1, p. 12]: 
Lex II: Mutationem motus propotionalem esse vi motrici impressae, ac fieri secundum lineam 

rectam qua vis illa imprimitur. 
which is translated in English as [2, p. 83] 
Law II: The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right 

line in which that force is impressed. 
By motus (motion) or quantitas motus (quantity of motion) Newton defined the product of the mass 

(quantitas materiae) times the velocity (velocitas) [1, Def. I and II. p. 2], i.e. what we refer to as 
momentum. Thus in mathematical language Newton’s second law of motion is expressed as 

     ( )d mv f
dt

=  (1) 

where m  is the mass, v  the velocity and ( )f f t=  the impressed external force in the direction of v . 
Newton presented this law as an axiom (Axiomata sive Leges Motus, Lex II [1, p.12]). He did not 

mention anything about how he arrived at this statement. But he was aware of the work of other scientists before 
the publication of the Principia. In his Scholium [1, p.20] he mentioned.  
“Hactenus principia traditi a Mathematicis recepta & experimentia multiplici confirmata”. 
which is translated [2, Scholium p.89]. 
“Hitherto I have laid down such principles as have been received by mathematicians, and are confirmed by 
abundance of experiments.” 

This is also attested by a letter of Newton to Robert Hook on 15 February 1676, where he had written: “If I 
have seen further it is by standing on the shoulders of Giants”. Undoubtedly, Galileo Galilei (1564 – 1642) and 
Johannes Kepler (1571 – 1630) are two of these giants. 

In a recent paper by this author [3], it was shown that Newton’s law of motion could have been derived 
using Galileo’s experiments with the inclined plane before this law was published by Newton. In the present 
paper, it is shown that Newton’s law of motion can be also derived from Kepler’s laws of planetary motion in 
conjunction with the inverse square law of attraction between planets and the concept of the derivative and the 
differential equation. 

Kepler used the measurements from Tycho Brahe’s astronomical observations to deduce the laws of 
planetary motion about the Sun stating the following [4] 
1. The orbit of a planet is an ellipse with the Sun at one of the two foci. 
2. The line segment joining the Sun and a planet sweeps out equal areas during equal intervals of time. 
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit. 

Johannes Kepler published his first two laws about the planetary motion in 1609, while the third law was 
published in 1619. These three laws together with the inverse square law for the attracting force between the 
Sun and the planets are used to derive Newton’s law of motion by applying the system identification procedure 
developed in [3]. Besides, this procedure gives the value of the standard gravitational parameter, if the 
employed data refer to the planets of the solar system or to the planets and their moons (Table 1).  
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 DERIVATION OF NEWTON’S LAW OF MOTION FROM KEPLER’S LAWS OF PLANETARY MOTION  

  

 
Table 1 Standard gravitational parameter 

 Body 
Satellite or 

planet minr  (km) maxr  (km) Period 
(days) 

m  (ms-2) 
Present  

m(ms-2) 
[5] 

1 Sun Mercury 46001009 69817445 87.969 1.3271e+20 1.3271e+20 
2 Earth Moon 363104 405696 27.321 4.0241e+14 4.0350e+14 
3 Mars Phobos 9234.42 9517.58 0.31891 4.2862e+13 4.2828e+13 
5 Jupiter Ganymede 1069200 1071800 7.155 1.2669e+17 1.2671e+17 
6 Saturn Titan 1186675 12570547 15.95 3.7921e+16 3.7941e+16 
7 Uranus Umbriel 255626 276374 4.144 5.7961e+15 5.7945e+15 
8 Neptune Triton 354753 354765 5.877 6.8363e+15 6.8365e+15 
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Abstract: A new nonlinear hyperelastic material model is introduced to model unidirectional composite, where the nonlinear 
material behavior is represented by just 1 material parameter in contrast to the five constant nonlinear elastic theory, where 9 
material parameter are required. It is shown that the presented material model can be used to simulate the cumulative second 
harmonic mode generation in unidirectional composite.  

 
1. Introduction 

The nonlinear wave propagation is a recently developed technique to monitor and detected even micro-
structural damage in isotropic and more important in composite structures [1,2]. This method is based on the 
second harmonic Lamb wave generation at material and geometrical nonlinearities. Due to the very small 
amplitude of these higher harmonic modes a cumulative effect is used, which ensures an adequate amplitude 
extraction [3].  

So far the numerical simulations of the second harmonic Lamb wave generation in composite structures is 
done using the five constant nonlinear elastic theory by Murnaghan, a nonlinear hyperelastic material model [4]. 
For transversely isotropic material the behavior is described by 5 linear (second order) and 9 nonlinear (third 
order) elastic constants [5]. However, the determination of the third order elastic constants, which give the 
relation between the wave speed and a prestress, is very complex. Therefore, in this study a new approach for a 
nonlinear hyperelastic transversely isotropic material model is presented, which is based on an existing linear 
model by considering the compressibility of the matrix material. In a second step the presented model is used to 
simulate the cumulative second harmonic mode generation in composite structures.    

2. Hyperelastic material model  
Hyperelastic material models are characterized by the existence of a strain potential, which can be written in 

terms of a strain measure or its invariants. The linear behavior of transversely isotropic material is given by the 
potential [6] 

  (1) 

where  and  are the invariants of the right Cauchy Green deformation tensor  and  are the 
five independent material parameters. This potential does not cover any compressibility effects. However, 
considering fiber reinforced plastic commonly used matrix material like Epoxy usually shows compressible 
behavior, which is not affected by the fibers. Therefore, a further part, representing the compressibility, is added 
to the potential given in (1). The new nonlinear hyperelastic potential reads  

  (2) 

Here,  is the bulk modulus and  the determinant of the deformation gradient .  

Based on strain energy potential the stress and stiffness tensor are obtained by  

  (3) 

To determine the material parameters for the hyperelastic material model  is set to 3.89 GPa, the bulk 
modulus of Epoxy. Afterwards the remaining five material parameter can be calculated by the method of equation 
the coefficients using the stiffness matrix for linear elastic behavior. The results are provided in Table 1.  
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SECOND HARMONIC LAMB WAVES IN UNIDIRECTIONAL COMPOSITE 

Linea
r 

      
121 GPa 8 GPa 4 GPa 3.75 

 
0.33 1.47 

 Hyper
elastisch 

          
0.527 

 
-1.875 

 
13.66 

 
1.25 

 
0.568 

 
3.89 

 TABLE 1: Linear and hyperelastic material parameters for the unidirectional lamina 

3. Numerical Simulations  

The numerical simulation of the second harmonic Lamb wave generation in a unidirectional lamina is done in 
FEAP. A two-dimensional model consisting of 9 node elements is used assuming a plane strain state. The model 
is 1 mm thick and has a length of 1 m. To satisfy the conditions for a cumulative second harmonic mode 
generation an excitation frequency of 2.3 MHz mm is chosen. The excitation of the primary wave field is realized 
by a turn burst signal consisting of 40 sine cycles. After a propagation distance of 15 cm the in-plane 
displacement component is extracted at several points with an interval of 5 mm. At each point the second 
harmonic amplitude is determined by a Wavelet-Transform using the Morlet-Wavelet as the Mother-Wavelet. 

 
FIGURE 1: Amplitude of the second harmonic S1-mode over the propagation distance based on the numerical simulation of the 

wave propagation using FEAP 

 
In Figure 1 the result of the second harmonic mode amplitude is plotted over the propagation distance. A 

linearly increasing behavior with the propagation distance is recognizable, characterizing the cumulative effect of 
the second harmonic generation. Therefore, the presented material model can be used to simulate the cumulative 
second harmonic Lamb wave generation in a lamina. 

4. Conclusion 
It has been shown that the presented material model is an adequate alternative to simulate the cumulative 

second harmonic generation in unidirectional composite. In contrast to the five constant nonlinear elastic theory, 
where nine nonlinear parameters are required, the number is reduce to one coefficient covering the nonlinear 
material behavior. 
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Abstract: The paper is inspired by recent experiment with a two-member discrete column subjected to dry friction force of 
interaction between the moving column and a moving plane. Experiment was presented in form of a YouTube film and 
recommended as an experimental evidence for flutter in the Ziegler column. We show that the tested mechanism, although 
subjected to a circulatory load, can not be identified with the original Ziegler column. 
 
1. Introduction 
 

The history of studies on stability of columns subjected to compressive forces goes back to Euler who 
analyzed the static buckling of elastic compressed rods and formulated the theory of buckling even now being 
used in the courses of strength of materials as a first attempt to address the stability problems of light load-
carrying structures [1]. The problem was refreshed and attracted much attention of scientists in structural 
mechanics in the 60-s of the last century when flutter was theoretically found as a result of so called follower 
forces that change their direction, following the current configuration of a system they act on (Bolotin [2]). 
Earlier, Ziegler [3] found flutter instability in a discrete two-degree-of-freedom double-rod system, now well 
known as the Ziegler column. The dynamical behavior of systems under assumed compressive follower forces 
showing flutter (like classical Beck and Leipholz columns) is not questionable and there are numerous studies 
of such systems demonstrating their specific properties, optimization and control. However, still rather little is 
known about the physics behind pure follower forces and there is skepticism among some scientists about the 
technical sense of the follower forces. Koiter [4] denied the importance of such forces even knowing the results 
by Sugiyama [5] concerning the effect of rocket propulsion as a source of a follower load acting on a beam. An 
impressive overview of rich literature on systems under follower forces was given by Elishakoff [6] who, being 
inspired by discussion between Koiter and Sugiyama, first wrote “Essay on the So-Called Follower Forces”, 
addressing it to a group of scientists for their opinions (Besseling, Bogacz, Bolotin, Dimitriyk, Doak, 
Herrmann, Karihaloo, Kounadis, Maier, Nemet-Nasser, Paϊdoussis, Panovko, Seyranian and Sugiyama). 

The most important reference for the present paper is the experiment by Bigoni and Noselli [7] - a 
YouTube film recommended as evidence for flutter in the Ziegler column. In the following we show the 
differences between the tested real mechanism and the Ziegler column in its original concept and formulation. 
 
2. Models of Ziegler’s column and the mechanism being tested 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: Mechanism being tested [7] 
 

The mechanism tested by Bigoni and Noselli consists of two rigid rods linked and supported like the two 
members of the Ziegler column. At the end of the second member a thin roller is mounted to transfer slip dry 
friction force T to the column, generated at the point of its contact with a moving plane. Normal force N  
between the roller and the plane is controlled so that the magnitude of the friction force is constant while its 
direction coincides with the relative velocity of the roller and the plane at the instantaneous point of their contact. 
Velocity V  of the plane is constant and directed along the column at its straight equilibrium position. The tested 
mechanism has 3 degrees of freedom and its Lagrangian equations of motion are as follows: 
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where ψϕϕ ,, 21  denote general coordinates and τFFn ,  are forces expressed as: 
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The corresponding equations of the original Ziegler column can be obtained from (1) by neglecting the third 
equation and assuming 0  ,0  ,0  , 3 ==≡= rmFconstFn τ . 
In the paper a detailed analysis of stability of the experimentally tested mechanism is presented and the results 
are compared with those known for the original Ziegler column. Special attention is paid to the existence of 
flutter and divergence in the tested system in order to answer the basic question of whether and to what extent 
the experiment reflects dynamical properties of the ideal Ziegler column. 
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Abstract: Arteries are composed of two mechanically contributing layers. Each layer shows at least an anisotropic 
viscoelastic response. Even in the case of assuming hyperelasticity with two fiber directions, a number of material 
parameters have to be identified for each layer. It can be shown that inflating the artery with an internal pressure and 
combining it with an axial stretch, the parameter identification yields correlated parameters (even between the models of 
different layers). Thus, fundamental investigations are performed to show the reasons of this effect. 

1. Introduction  
Parameter identification using finite elements for solving an entire initial boundary-value problem is well-

established today, see, for example, [1,2]. In this case use is made of experimental data in form of resulting 
forces, torques, displacements, or full-field measurement information to calibrate the mathematical model to the 
experimental observation. Both data is drawn on for determining the residual between simulation and 
experimental data, which should be a minimum for a particular material parameter set. This automatic procedure 
can be – theoretically – applied to any kind of experiments. The question is, however, whether the data is 
sufficient, or what the quality of the parameters, which are obtained by the optimizer, is. In [3] such quality 
measures are transferred from the mathematical literature to problems in solid mechanics. 

 

                            

FIGURE 1: Contour detection of an artery from digital image analyses and mesh generation for material parameter identification 
purposes 

In the experimental investigations of arteries one possibility is to stretch such materials in an experimental 
setup by prescribed axial displacements while it is inflated by a pressuring device. A force gauge can be used to 
measure the axial force and optical contour measuring systems can be applied to determine the radial 
displacements in one plane. It turns out that quality indicators show a correlation between the material 
parameters of the different layers (and in each layer itself as well). In Fig. 1 such a picture sequence is shown. 

The reason of this behavior is studied at the following examples: first, we start with uniaxial tensile test for 
small deformations since this problem provides the reason of the problem. Additionally, the thick-walled tube 
under internal pressure with one or two layers is studied as well. For the latter case, a solution is derived. The 
quality measures of the identification process are investigated at such problems. Finally, we can look which 
further experiment can be provided – if possible – so that the material parameters are addressed in a more 
sufficient manner. 
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Abstract: In the paper several new methods of local faults detection in helical gears were discussed. They were tested on 
the helical gearbox model and verified on the back-to-back test stand. All the described methods are based on analysis of 
the time signals and contrary to the methods based on spectral analysis they allow for precise localization of gear defects 
like pitting and tooth fracture linking them to the particular pinion or gear teeth. 
 
1. Introduction  
 

Local damages to the gear teeth causes short-term, local impulses in gear vibration signal repeated every 
rotation of the shaft and resulting in the phenomenon of amplitude and phase modulation [1,2]. The latter effect 
dominates in the initial stage of failures development, when the energy changes of signal are particularly small 
[3]. This type of disturbances are referred to as low-energy effects [4]. Low-energy means that the power 
increase of the vibroacoustic signal as a result of the development of failures is small compared to the changes 
in the power structure of the individual meshing harmonic. That small changes in signal energy causes 
problems in their detection forcing development of new methods of signal analysis. 

The main imperfection of most methods currently used in gear diagnostics is that they use integration that 
is by default averaging analyzed signals. In this way, small changes in the signals appropriate for the initial 
phases of failure development are further minimized by the use of signal analysis algorithms. 

The aim of this study was to present diagnostic methods enabling the identification of local damages of 
gears, allowing at the same time precise localization of the damage. The common feature of these methods is 
the direct use of time signal processing algorithms. Their advantage is the simplicity and speed of action that is 
of great significance for the implementation in the autonomous transmission diagnostic systems and diagnostic 
systems working online. These methods were first tested on a simulation model of the gear assembly and later 
tested during the experiments on a back-to-back test stand. 
 
2. Model of the helical gear  
 

In the used model of the helical gear [5] it is assumed that both wheels have the possibility of making an 
additional rotation in relation to the motion resulting from the revolution of their base circles. The resulting 
interference of tooth profiles can be determined by taking into account the meshing geometry and is being 
compensated by the flexible deformation of teeth. The meshing stiffness and the changes of its value for the 
entire path of contact were defined using a FEM models of toothed wheels. Its modification allows introducing 
local faults related to the teeth (e.g. pitting or tooth fracture). The model takes into account variable distance 
between axes (shaft runout or flexible shaft deformation), instantaneous errors of standard contact angle, pitch 
errors, variable meshing stiffness along the path of contact, etc. 

 
3. Methods for local faults detection  

 

Several methods based on the energetic operators were proposed and tested on the above gearbox model 
and also verified in practice on the back-to-back test stand allowing finding local nonstationarities in the time-
domain signals caused by tooth defects like pitting and tooth fracture. These methods directly uses the signal 
segmentation in time domain. Beginnings and the lengths of consecutive segments are defined according to the 
geometry of gears (they are related to the transverse radial pitch) with use of the trigger signal. Most of the 
methods are based on instantaneous power of the signal (signal’s envelope) and Teager-Kaiser energy operator 
and use differential parameters of the acceleration signal calculated for the consecutive meshes (segments). 
Segmentation of the signal allows presenting results on the so-called meshing plane, a plane in coordinates 
pinion teeth vs. gear teeth [6]. Signal representation on this plane allows to link local nonstationarities in the 
signal to the relative positions of both shafts (gear teeth) so that the visible changes in the signal are directly 
linked to the tooth fatigue damages such as pitting and tooth base fracture as well as manufacturing errors (e.g. 
imbalance or misalignment of shafts) in gearbox. 

 
4. Conclusions  

 

All the described methods are based on analysis of the time-domain signals. Contrary to the integral 
methods based on spectral analysis these methods allow not only for precise localization of local gear defects 
like pitting and fatigue fracture at the tooth base but also to link them to the particular pinion or gear teeth with 
the possibility of quantification of the size of the fault. The common feature of  developed methods is a 
segmentation according to the kinematic of the machine of resampled and averaged acceleration signal so the 
results can be related to the accuracy of the cooperation (meshing) of the individual teeth of the pinion (or 
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wheel). 
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Abstract: In this work, the material point method is reformulated and originally upgraded to simulate brittle fracture 

phenomena. A phase field description of brittle fracture is employed. Experimental results validate the proposed method. 

1 Introduction 
Robust and accurate simulation of fracture processes is a challenging and intriguing task relevant to a series 

of real-life applications, e.g., in ice-mechanics, composite material behaviour and concrete fracture. Traditional 
approaches to simulating brittle fracture include the implementation of element deletion and re-meshing 
strategies within the standard finite element method, cohesion based finite element strategies and the extended 
finite element method. Recently Phase-field methods (see, e.g., Borden et al. [1]) have been introduced to 
address brittle fracture. Phase-field fracture represent cracks by means of an additional continuous field (Phase-
field) that smoothly varies from zero (inside the crack) to one (away from crack). This field is then discretised 
using appropriate strategies; to this point the standard finite element method as well as its isogeometric variant 
have been emplyed. The Material Point Method is effectively an Arbitrary Lagrangian Eulerian method which 
inherits all the advantages from the Lagrangian and Eulerian descriptions of continuum mechanics. In this, the 
continuum is represented by a set of material points that are moving within a fixed computational grid where 
solution of the governing equations is performed. A notable merit is that the accuracy of the method does not 
depend on the quality of the underlying mesh as the latter can be conveniently chosen to be orthonormal. 

2 Phase field material point method 
In the following derivations, the case of an elastic domain Ω  is considered subject to body forces only for 

brevity. The corresponding equilibrium equations are readily defined as 
 ( )Div + =σ b 0   (1) 

where σ  is the stress tensor and b  the vector of body forces. The domain is considered sufficiently supported to 
prevent rigid body motion. The phase field method approximates the line integral of the fracture energy, i.e. the 
energy released due to crack opening along a path Γ  with a volume integral over the volume of the elastic 
domain Ω  according to the following expression 
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where c  is the phase field, cG  is the critical fracture energy density and 0l  is a length scale. The evolution of 
the phase field parameter is further governed by the differential equation (3) below 

 
2

20
0 2

4
1 4 1

c i

l H cc l
G x

  ∂
+ − =  ∂ 
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where 1, 2,3i =  and H  is a history field satisfying the following Kuhn-Tucker conditions 

 ( )0 0 0el elH H H Hψ ψ+ +− ≤ ≥ − =    (4) 

Equations (4) essentially enforce the irreversibility condition of the crack problem when no healing mechanisms 
exist. In equations (4), elψ +  denotes the elastic energy density corresponding to the positive components of the 
strain tensor. This is conveniently evaluated through a polar decomposition of the stress and strain tensor. 
Further information can be found in Miehe et al. [2]. Within this setting, the elastic energy density is additively 
decomposed as 

 2
el el elcψ ψ ψ+ −= +   (5) 

where elψ −  is the elastic energy corresponding to the negative part of the stress and strain tensor (see, e.g., 
Miehe et al. [2]). Equation (5) essentially establishes that (i) decreasing values of c  result in a degrading 
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material response; 1c =  being a limit value where no degradation takes place and (ii) this degrading behaviour 
is imposed only on the positive part of the energy density, thus allowing crack propagation due to tensile 
stresses only. Equations (1) and (3) form a coupled system of differential equations. Coupling is introduced at 
the constitutive material level, through consideration of the effect of the phase field on the positive elastic 
density (equation (5)) and the Kuhn-Tucker conditions introduced in equation (4). Herein, the coupled system is 
solved by reverting to a Material Point Method. To achieve this, the weak form of the coupled system is derived 
and appropriately redefined over a set of material points. Consider the case of a set of material points pn  within 

an Eulerian element of nn  nodes, the resulting discrete equations assume the following form 

1 1
( ) ( ( )) 0, 1,..

p pn n

p p I p p p I p p n
p p

N N I nρ
= =

Ω + ⋅∇ Ω = =∑ ∑u x σ x   (6)     and 
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+ Ω + ∇ ∇ Ω = =Ω 

 
∑ ∑ ∑ ∑x x x x x   (7) 

for the equilibrium and phase field equations respectively, where 1,2,... nI n= . In equations (6) and (7), IN  
correspond to the shape functions of the Eulerian mesh while pΩ  corresponds to the volume of the material 
point p . Assembled at the structural level, equations (6) and (7) give rise to a set of nonlinear equations that 
can be solved with either explicit or implicit solvers. 

3 L-shaped panel test 
A set of cyclic experiments conducted in L-shaped reinforced concrete panels has been considered to 

validate the proposed scheme. The geometry, material properties, boundary conditions and loading scenario 
considered are shown in Figure 1(a) and (b). The width of the panel is 100mm. In Figure 1(c), the 
experimentally derived crack path is presented whereas in Figure 1(d) the derived force displacement path is 
shown. This is identical to the load path reported in Ambati et al. [3] derived using a FEM phase field approach. 
In Figure 1(e)-(f) snapshots of the phase-field evolution are shown; Figure 1(f) corresponds to the final state of 
the specimen. 

   
(a) (b) (c) 

   

(d) (e) (f) 
Figure 1 L-shaped concrete panel tests and numerical simulation 
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Abstract: Many materials and structures are subjected to complex mechanical loading and high-temperature environment. 
Examples include heat resistant steels, nickel-bases alloys, age-hardened aluminum alloys, cast iron and metal matrix 
composites for materials as well as turbine blades, turbine housings, rotors, turbochargers, steam pipework and 
microelectronics components for structures. In the last decades, numerous approaches to the description of the material 
behavior at high temperature have been developed and efficiently used for the analysis and life assessment of components. 
The aim of this presentation is to discuss requirements on the constitutive models and underline several open questions 
based on examples from the engineering practice as well as micromechanics simulations. 

 
1. Introduction 

To illustrate the structural behavior under thermo-mechanical loading let us consider a turbine rotor. The 
steam temperature on the surface of the rotor is changing according to hot start-up, steady running and hot 
shut-down sequence. The results of the heat transfer analysis are discussed in detail in [1]. Figure 1a shows the 
temperature vs time plots for the points A and B of the rotor.  

 
FIGURE 1: Results of thermo-mechanical analysis for a turbine rotor. (a) temperature distribution during cool-down and 

temperatures in two points vs time, (b) normalized tangential stress vs mechanical strain for one cycle, after [1] 

The greatest difference between temperatures of these points is observed during the heat up regime. Within 
the steady running stage the temperature attains steady state. During the cool-down the temperature difference 
increases such that the temperature of the surface is lower than the temperature of the symmetry axis. The 
temperature field for a time step of cooling is shown in Fig. 1a. Figure 1b illustrates the normalized tangential 
stress vs mechanical strain loop in the notch area. The part I-II is the response during the warm-up stage with 
the increasing temperature difference between the surface and the core point of the rotor. Here the tangential 
stress and strain decrease down the minimum (negative) values in the inelastic range. The part II-III 
corresponds to the warm up stage with the decreasing temperature difference. The part III-IV results from the 
steady running stage with a slow increase in the strain and decrease in the stress (creep regime). The part IV-V 
is the tensile regime during the cool-down stage with an increase in the temperature difference. The part V-VI 
is the final cool-down stage with a decrease of temperature gradient. This example illustrates that both slow 
and transient inelastic processes of material behavior have to be described by a constitutive model in a unified 
manner. Several phenomena can be observed experimentally over many load cycles only. Examples include 
cyclic softening, ratcheting and fatigue damage. The local loading profile determined within one cycle, such us 
hot start, is crucial for the material behavior over the longer operation time. This should be reflected by 
evolution equations for internal state variables. 
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FIGURE 2: Surface layer effect in a polycrystal cylindrical specimen, after [2] 

Many features of inelastic material behavior can be qualitatively illustrated and explained based on 
micromechanical analysis. Figure 2 shows a geometric model of a polycrystal specimen created using a 
Voronoi diagram [2]. Applying the homogeneous displacements on the edges the low cycle fatigue behavior 
was investigated numerically. To get smooth deformation and stress fields,  N model specimens were randomly 
generated and the results of analysis were averaged. Figure 2 illustrates the stress field and the hysteresis loop. 
The results show the surface effect of the stress distribution: the stress values at the surface are substantially 
lower than the stress values in the bulk of the sample. To capture microscale inelastic phenomena the 
constitutive model should meet several requirements. First the slip geometry inside individual grains (slip 
planes and directions) is not always well-defined at high temperature. In the creep range, complex dislocation 
substructures like cells and subgrains may form and/or evolve leading to additional hardening/softening 
effects. Furthermore stress and strain states exhibit surface layer and gradient effects. 
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Abstract: In this work a new method for analyzing RC members until collapse due to severe cyclic loading is presented. It 
accounts for failure due to core crushing, cover spalling and/or inelastic buckling of longitudinal rebars. Steel and concrete 
are independently modeled on the basis of new developed smooth plasticity and damage models, while their combined effects 
are incorporated into a fiber beam-column finite element based on mixed energy principles. This formulation allows for 
effective solutions adequate for earthquake engineering applications. 

1. Introduction 

Modeling Reinforced Concrete (RC) behavior under monotonic and cyclic loading is of particular interest in 
earthquake engineering due to its decisive role in computer simulations of frame structures. Various models 
have been proposed either resulting from phenomenological description of experimental behavior, or originating 
from theoretical considerations.  

2. Concrete cyclic behavior 

Plain concrete can be modeled using plasticity and damage theories. Soon after initial elastic loading, 
friction along initial cracks is manifested as elastoplastic behavior with a nonlinear isotropic hardening branch. 
At later stages, due to extensive cracking the effective reference volume at the critical region of the RC member 
is reduced resulting to a softening branch. During unloading concrete exhibits nonlinear behavior, while in 
reloading it remains linear. Particularly, when unloading from tensile stresses, permanent tensile strains settle 
due to incomplete crack closure caused by misfits at crack edges. If loading at compression field follows, 
stiffness gradually obtains its compressive value as cracks close. All these physical phenomena are implemented 
in the following smooth rate stress-strain law [1]: 

 ( ) ( ), , 1 2 4 2, 1 1 1 i C
C C t C C t i i C C C C un rec i

i i

dD σ
σ E ε E D a H H H H r r E

dk E
   = ⋅ = − ⋅ − − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
   

   (1) 

where the first and the second term in the bracket refer to the plastic and damage behavior respectively, 
while functions run and rrec describe nonlinear unloading and crack closure phenomena. Verification of the 
proposed concrete model with experimental data is shown in Figure 1.  

 

Figure 1: Verification of the compressive and tensile behavior of the proposed concrete model 

3. Rebar cyclic behavior 

Steel rebar is modeled via a smooth rate model incorporating a combined nonlinear kinematic and isotropic 
hardening law. It is also valid with plasticity postulates and as a result it can simulate short reversals accurately 
without overshooting problems [2]. The general steel constitutive relation is presented below in relation (2) 
where function α(εp) incorporates nonlinear hardening and Heaviside functions H1 and H2 describe yielding and 
unloading conditions. 
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 S, 1 2, 1 (1 )S t S S S Sσ E ε σ α H H E ε = ⋅ = − − ⋅ ⋅ ⋅ ⋅      (2) 

At large tensile strains an iterative procedure is developed that can describe inelastic buckling which is 
reflected in the average stress-strain curve as negative stiffness in the compressive range. Correlation of the 
proposed model and experimental results of steel rebars are presented in Figure 2. 

 

Figure 2: Verification of rebar cyclic behavior exhibiting inelastic buckling 

4. Variational beam formulation 

RC members describe a softening branch which results in equilibrium errors when classical displacement 
based finite elements are used. For this reason the proposed material models were incorporated to a mixed beam 
finite element based on the two-filed Hellinger – Reissner potential. The rate structure of the constitutive 
equations leads to numerical solution schemes with either linearization of the equations [2] or with solution as 
an ODE system in state space form. 

5. Numerical results 

The developed beam-column element is compared against experimental data of RC columns under severe 
cyclic loading. Such a comparison is presented in Figure 3 where the column-pier specimen fails due to 
inelastic buckling of longitudinal rebars. 

 

Figure 3: Analysis of an RC column and comparison with experimental results 

6. References 
[1] Andriotis, C., Gkimousis, I., Koumousis, V. (2015). "Modeling Reinforced Concrete Structures Using Smooth Plasticity and 

Damage Models." J. Struct. Eng., Volume 142, Issue 2. 
 

[2] Gkimousis, I.A., Koumousis, V.K. (2016). “Inelastic mixed fiber beam finite element for steel cyclic behavior.” Engineering 
Structures 106, pp. 399-409. 

34

https://www.researchgate.net/publication/284122510_Inelastic_mixed_fiber_beam_finite_element_for_steel_cyclic_behavior
http://www.sciencedirect.com/science/journal/01410296
http://www.sciencedirect.com/science/journal/01410296


9th German-Greek-Polish Symposium  
Recent Advances in Mechanics  
September 04-09, 2016 
Kolympari, Chania, GREECE 

ANALYTICAL MINIMUM WEIGHT DESIGN OF TRUSSES USING 
CYLINDRICAL ALGEBRAIC DECOMPOSITION 

Dr. A. E. Charalampakis1 
1Gediz University, Izmir, Turkey 

 
Abstract: A methodology for the discovery of globally optimal analytical solutions for the minimum weight design of 
trusses, including stress, displacement and frequency constraints, is presented. The methodology is based on the Cylindrical 
Algebraic Decomposition (CAD) algorithm, in tandem with powerful symbolic computation. To the best of our knowledge, 
no similar attempt can be found in the literature. 
 
1. Introduction 
 

In this work, a methodology for the derivation of exact, globally optimal solutions to truss weight minimization 
problems is presented. The basis of the methodology is the Cylindrical Algebraic Decomposition (CAD) 
algorithm, in tandem with powerful symbolic computation for the discovery of stationary points.  
 

2. Cylindrical Algebraic Decomposition 
 

Given a finite set [ ]1 2, ,..., nP R x x x⊂  of polynomials in n  variables, a P -invariant cylindrical algebraic 
decomposition is a special partition of n�  into components, called cells, over which each of the polynomials from 
P  has constant sign on each cell of the decomposition. The cylindrical algebraic decomposition (CAD) algorithm 
is an algorithmic procedure proposed by Collins [1] which constructs these decompositions; it also provides a 
point in each cell, called sample point, which can be used to determine the sign of the polynomials. 

Further, given a logical combination of polynomial equations and inequalities in n  real unknowns, one can use 
the CAD algorithm to find a cylindrical algebraic decomposition of its solution set [2]. This decomposition 
provides the feasible domain in a suitable form for exact global optimization, as shown next. 
 

3. Example: 3-bar truss 
 

The well-known 3-bar truss (Figure 1a) is used to demonstrate the method: 
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Applying the CAD algorithm in the sequence { }1 2,x x , the following is derived: 

 ( )1 1
1 2

1

2 11 2 3 1 1
2 2 1

x x
x x

x
−− +

< < ∩ ≤ <
−

. (2) 

The above describes precisely the coordinates of all the points ( ) 2
1 2,x x ∈�  for which the constraints

1 0c ≤ , 2 0c ≤  and 3 0c ≤  hold simultaneously. The algorithm could have been applied to even more 
constraints (representing stress, displacement, frequency, or any other kind of constraint). After the discovery 
of stationary points, the analytical solution is derived (Figure 1b), which is compared to the results of other 
researchers in Table 1. 
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FIGURE 1: (a) 3-bar truss (b) feasible domain, constraints, and global optimum. 
 

 Ray and Liew 
[3] Liu et al. [4] This study 

(analytically) 
This study 
(numerically) 

1x  0.7886210370 0.788675134746 ( )3 3 6+  0.788675… 

2x  0.4084013340 0.408248290037 1 6  0.408248… 
min f
 

263.8958466 263.895843376468 ( )2 3 2L +  263.895843… 
 

TABLE 1: Results for the 3-bar truss 
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Abstract: In the present contribution, we address computational first-order homogenization of transient diffusion problems. 
There, two different cases are considered. Firstly, when the size of the representative volume element (RVE) is negligibly 
small and secondly, when a finite RVE size is assumed. These cases result in stationary and transient microscale solutions, 
respectively.  
 
1. Introduction 
 

Diffusion is essential for many processes observed in nature like drug transport in biological tissue or 
mineral unmixing. In order to determine the response of a macroscopic body with heterogeneous microstructure, 
we use computational first-order homogenization. The well-known assumption of scale separation, i.e. the 
existence of different length scales l (micro) and Ml (macro) with l << Ml, results in a stationary microscale 
problem, see Özdemir et al. [1]. For a relaxed version of this condition, that is for a finite size of the RVE, this is 
not necessarily the case. See Larsson et al. [2] and Pham et al. [3], where the formulation on the micro-level is 
fully transient.  
 
 

2. Computational Homogenization 
 

In the following, the superscript M labels macroscopic quantities. Consider a macroscopic body B with 
boundary ∂B and a microstructural representative volume element V with boundary ∂V attached to macroscopic 
particles with placement MX. Particles on the microscale are located at positions X. We assume that the RVE is 
centered at MX. On the micro- and macroscale, respectively, the species transport is governed by the following 
balance equations 

  

D𝑡𝑐 − Div 𝑯 = 0   in   𝑉     and     D𝑡 𝑐𝑀 =  − Div 𝑯𝑀𝑀  = 0   in   𝐵. (1) 
  

The chemical potential µ =µ(X,t) is used in order to describe the microscale concentration c = c(µ) and 
the microscale species flux H = H(c, Grad µ). Their macroscopic counterparts are denoted Mc and MH. 
Multiplication with the scalar-valued test functions δµ and δMµ and application of the divergence theorem 
yields the corresponding weak formulations on the microscale 

  

� D𝑡𝑐 𝛿𝛿 − 𝑯 ∙ Grad 𝛿𝛿 dV 
𝑉

− � 𝛿𝛿 𝐻p dA 
𝜕𝑉𝐻

= 0     ∀ 𝛿𝛿 ∈ 𝐻01 , (2) 
  

and on the macroscale  
  

� D𝑡 𝑐𝑀  𝛿 𝛿𝑀 − 𝑯𝑀 ∙ Grad𝑀  𝛿 𝛿𝑀  dV 
𝐵

− � 𝛿 𝛿𝑀  𝐻𝑀 p dA 
𝜕𝐵𝐻

= 0,∀𝛿 𝛿𝑀 ∈ 𝐻01 (3) 
  

The quantities MHp and Hp denote the species flux across the boundary. 
 

 
FIGURE 1: Comparison of the homogenized solutions with the solution of the corresponding full resolution models. The length 

of the underlying microstructure is denoted l. As benchmark the solution using the model of Özdemiret al. [1] with stationary 
microscale is given. 

 

When using first-order homogenization, the microscopic chemical potential decomposes into a linear 
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macroscopic contribution and fluctuations 𝛿�, that is 
  

𝛿 =  𝛿𝑀 + Grad𝑀 𝛿 ∙ �𝑿 − 𝑿𝑀 �𝑀 + 𝛿� . (4) 
  

The fluctuations vanish on the boundary of the RVE in order to enforce Grad𝑀  𝛿𝑀 = 〈Grad 𝛿〉. Here, 〈∘〉 is 
the spatial averaging operator. A Hill-Mandel like statement is used to equate the dissipation power at both 
scales, i.e.  

  

D𝑡 𝑐𝑀  𝛿 𝛿𝑀  − 𝑯𝑀 ∙ Grad𝑀  𝛿 𝛿𝑀 =  〈D𝑡𝑐 𝛿𝛿〉  − 〈𝑯 ∙ Grad 𝛿𝛿〉. (5) 
  

With the aid of equations (1), (4), and (5) we eventually find 
  

D𝑡 𝑐𝑀 =  〈D𝑡𝑐〉       and       𝑯𝑀 = 〈𝑯 − D𝑡𝑐�𝑿 − 𝑿𝑀 �〉. (6) 
  

The last term on the right hand side can be interpreted as microscale inertia to a change in the macroscopic 
species concentration. For a vanishingly small RVE, this term vanishes and the macroscopic flux is equal to the 
averaged flux on the microscale. This behavior can be observed in figure 1, the bigger the RVE size the slower 
the species transport through the body. When the size of the RVE decreases the model of Özdemir et al. [1] is 
approached. 
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Abstract: RSDM and RSDM-S are two recent numerical procedures that constitute a most physical way to estimate the 
long-term response and to provide safety margins for cyclically loaded elastoplastic structures. In this work, their combined 
application to benchmark structures is discussed. Moreover, advances concerning their quicker convergence as well as 
extensions to provide shakedown boundaries in multiple loading domains are proposed.  

1. Introduction 

The exposition of a civil or mechanical engineering structure or structural component to high levels of 
variable repeated loading may lead them to asymptotic limit states related to global excessive deformations 
(ratcheting) or local ones (e.g. low cycle fatigue). Typical cyclic loadings may be heavy traffic, earthquakes or 
waves on civil engineering structures, like bridges, pavements, buildings, and offshore structures. On the other 
hand, in mechanical engineering structures, like nuclear reactors, aircraft propulsion engines, the co-existence of 
cyclic mechanical together with high temperature loads may be possible cases of collapse. Below a certain level 
of the applied loading, a favorable limit state exists that, after some initial plastic straining, the structure 
eventually adapts itself to a steady condition with elastic straining only (shakedown). This is a safe state which 
extends the life cycle of a structure.  

The determination of the long-term asymptotic states of elastoplastic structures, loaded cyclically is normally 
done using cumbersome time stepping calculations. A much better alternative, that requires much less 
computing time, is offered by the direct methods. On the other hand, if the exact loading time history inside the 
cycle is not known, but only its variation intervals, then direct methods are the only way to establish safety 
margins. 

2. The Residual Stress Decomposition methods (RSDM & RSDM-S) 

Most direct methods are based on the two theorems of plasticity and they are formulated within the 
framework of mathematical programming. A different procedure called Residual Stress Decomposition method 
(RSDM) [1] has appeared, which assumes the exact cycle time history of the loading. The procedure exploits the 
fact of the expected cyclic nature of the residual stresses at the asymptotic state. Thus it decomposes them into 
Fourier series whose terms are evaluated iteratively by satisfying equilibrium and compatibility at several time 
points inside the cycle.  With roots on this method, an approach (RSDM-S) [2, 3] has been formulated that may 
evaluate the shakedown load factor of a loading consisting of two different loads varying between an upper and 
a lower limit that must be estimated. The loads may be applied either proportionally or independently. Loading 
domains consisting of two mechanical or one mechanical and a thermal load have been considered [2-4]. The 
domain is converted to an equivalent time history loading by drawing smooth curves that pass through these two 
limits. The loading domain may be isotropically varied through the multiplication by a load factor. The 
shakedown load factor is estimated through iterations by continuously shrinking the loading domain so that a 
constant distribution of residual stresses may evolve, which is the criterion for elastic shakedown to occur. 
Inside an iteration, the RSDM is used to provide the residual stress distribution, as well as its Fourier 
coefficients, for the loading corresponding to the current load factor.  

Both the procedures are implemented through the discretization of the structure with finite elements 
assuming an elastic-perfectly plastic material with a von Mises yield criterion. They are formulated within the 
framework of the stiffness method and may thus be implemented in any standard finite element program with no 
need to use any optimization algorithm. To add to the procedures’ numerical efficiency, the stiffness matrix 
needs to be formed and decomposed only once. 

In the present work the two methods are successfully combined [5] offering a valuable help to understand 
complex phenomena, such as shakedown, alternating plasticity, and ratcheting. Advances of the methods, like 
different tolerance criterion, that improves their computational time, are also discussed. The RSDM-S is also 
herein extended to thermomechanical loadings that consist of three loads. Further possible extension of the 
method to multiple loading domains is also presented.  

Examples of application for various structures and loadings will be presented during the workshop. 
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Abstract: Problems associated with material testing on flat specimens under large deformation due to 
compression or cyclic tension-compression are discussed. A short review of the anti-buckling fixtures developed 
up to now is given with special emphasis on the new fixture elaborated at the Institute of Fundamental 
Technological Research in Poland.  

1. Introduction  
Material characterization using flat specimens under compression within large deformation range 

procure many difficulties. The buckling effect is regarded as the most significant. Among many 
important phenomena observed during cyclic tests carried out on the flat specimens one can 
distinguish: (a) changes of the hardening modulus of a material due to variation of the loading 
direction; (b) strain-hardening stagnation observed after change of the loading direction; (c) 
relationship between strain amplitude and stress saturation; (d) changes of the elastic modules due to 
cyclic loading. Tension-compression tests are especially important for materials exhibiting mechanical 
properties to be dependent on the first stress invariant. One can indicate the magnesium alloys for 
example. 

The fixture elaborated by the team from IPPT changes its length with specimen elongation or 
shrinkage during a test which allows application of cyclic load, Fig. 1. The friction force, which is 
generated due to a movement of both parts of the fixture, is measured by the special strain gauge 
system during each test. It allows eliminating friction force influence on the stress-strain 
characteristics. 

  

FIGURE 1: Scheme of general and exploded views of the fixture 

The results of investigations carried out on steel, brass and aluminium alloy using the new fixture 
were captured. Selected examples are presented in Fig. 2 for the brass. It shows the results from strain 
controlled tension-compression cycles performed for the constant strain amplitude equal to ±2%, Fig. 
2a, and variable strain amplitude within the range ±4%, Fig. 2b. Variations of the strain control signal 
are presented for both tests in graphs (c) and (d) of Fig. 2, respectively. Force responses into those 
programmes together with friction force measurements are documented in graphs (e) and (f) of Fig. 2. 
As it is clearly shown, the brass exhibits softening effect. Also, the so called strain-hardening 
stagnation observed after change of the loading direction may be noticed. 
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FIGURE 2: Hysteresis loops under cyclic tension-compression for: (a) constant; and (b) variable  
strain amplitude; graphs (c) and (d) represent strain control signal and displacement; graphs (e) 

and (f) show force responses into the strain control signals in graphs (c) and (d), respectively 
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Abstract: To adequately describe the pull-out of reinforcing fibres is both a challenging and time consuming task. Thus an 
efficient solution procedure is required. A powerful projection-based reduction method is the proper orthogonal decomposi-
tion (POD). Herein, the problem is projected into a lower dimensional subspace built up from so-called snapshots. However, 
the choice of these snapshots does influence both the accuracy of the numerical results and the numerical effort. Within this 
contribution the applicability of the POD is discussed. 

1. Introduction 

In civil engineering and mechanical engineering many structures are made from fibre reinforced materials. If 
such structures are exposed to impulsive loads, cracks may occur which are bridged by the reinforcing fibres. 
The amount of load bearing capacity of the structure clearly depends on, amongst others, this crack bridging. 
The crack bridging itself is strongly influenced by the dynamic pull-out of the reinforcing fibres. That is, a 
deeper understanding of the mechanical effects taking place during the dynamic fibre pull-out helps in increas-
ing the resistance of structures to impulsive loads. However, in general the simulation of the fibre pull-out is 
numerically expensive, see Fig. 1. Thus, strategies are sought which allow for reducing the numerical effort. 
One of these strategies – the POD [1] – is discussed in this contribution. 

2. Fibre pull-out 

The dynamic pull-out of a fibre from the surrounding host material is characterized by e. g. the stiffness and 
density of the fibre, the host material, and – if existent – the interphase between both constituents. Additionally, 
the bond behaviour fibre-host (or fibre-interphase-host) is of interest, as a fibre pull-out is only possible if the 
bond fails along the fibre. That is, something like a moving load front will appear. Concerning the load, its time-
dependence and magnitude are of major concern. As can readily be seen, an advanced numerical model is nec-
essary for adequately modelling the fibre pull-out. In order to provide a reference solution for the numerical 
model, in Weber et al. [2] a simplified analytical model is introduced which however is taking into account 
major effects occurring in the advanced model, too. By means of this analytical model the time-dependent be-
haviour of the displacement along the fibre as plotted in Fig. 2 can be described qualitatively. The validation of 
the numerical model allows for deeper investigations, which as expected is time-consuming. Consequently, a 
method is sought which reduces the computational effort while maintaining a good quality of the results ob-
tained subsequently. Within this contribution the POD is chosen. The main idea is to project the original system 
to a lower dimensional one. This reduction is achieved by multiplying the system’s stiffness matrix K, the vector 
of the incremental nodal displacements ∆𝑫, and the residual vector R by the so-called subspace matrix 𝝓 

 𝝓𝑇𝑲∆𝑫 = 𝝓𝑇𝑹 . (1) 

Herein, 𝝓 is the (subspace) matrix of the left-singular vectors of the so-called snapshot matrix [D1, D2, … , Dl] 
containing the nodal displacements of the system at l time steps for a given load [3]. The quality of the approxi-
mation of the reduced system strongly depends on the amount n of left-singular vectors taken into account 
(Fig. 2). These left-singular vectors are assigned to the n largest singular values. 

     

FIGURE 1: FE-Model          FIGURE 2: Displacement distribution 
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3. Results 

The POD is an efficient model order reduction method. Depending on the amount of left-singular vectors 
used for the computations accurate results compared to the unreduced system can be achieved. As these eigen-
vectors only contain the system’s information up to the last time step taken into account, only an interpolation of 
the systems behaviour with respect to the time is possible, while an extrapolation is difficult. If the snapshots are 
generated for different load magnitudes (that is, a lower and an upper bound), an interpolation of the system’s 
behaviour for loads between these bounds is possible, too. 
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Abstract: Using the direct Liapunov method, stability of carbon nanotube rotating with constant angular velocity is 
analysed. A modified nonlocal beam model is used to describe two- dimensional transversal beam displacements. The 
nanobeam is axially loaded by a constant and  time-dependent wide-band Gaussian force. The critical angular velocity is 
written as a  function of beam mechanical parameters, axial force characteristics and the nanoscale coefficient. 
 
1. Analysis 
 

Among other applications carbon nanotubes are also expected to be used as elements of nanomachines, e.g. 
nanoshafts used as driving elements. They can be modeled as the Bernoulli-Euler beam rotating with constant 
angular velocity ω,  with respect to own axis and subjected to an axial force. The Erringen-Lim [1]  formulation 
of nonlocal elasticity is used to describe bending of nanobeam with the constant bending stiffness EJ, length l, 
transversal displacements u,v, axial coordinate x,  transversal loading   qu , qv , and  nanoscale τ = eo a/l , where  
eo  material parameter, a  inner scale  

 

uxxxxxx,xxxx, quEJuEJ =− 2τ     (1) 

vxxxxxx,xxxx, qvEJvEJ =− 2τ     (2) 
 
Eq. (1) and (2) have the similar form as the equations derived in the frame of gradient elasticity by 

Papargyri-Beskou and Beskos [2]. Natural boundary conditions in the first approximation have form 
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Finally, taking into account the internal and external  damping forces with constant proportionality 

coefficients  β1 , h1, respectively, dynamics equations in nonrotating coordinate system in dimensionless 
coordinates have the form  
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In order to examine stability of the undeflected equilibrium of nanoshaft   (the  

trivial  solution) the energy-like functional have the form Tylikowski [3] 
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 If the axial force has a stochastic wide-band Gaussian component Eqs(4) are written  

 as a system of stochastic Itô equations   and using the same functional (5)  sufficient 
 conditions of uniform stochastic stability can be obtained.      
 
 2. Results  
 
           Applying  the  direct  Liapunov  method  to  functional (5)   along dynamic   
 equations assuming  the bending    stiffness e = 10-6,   the internal damping coefficient  
 equal to  thermoelastic   damping  coefficient β1= 10-4 and    β1=h1  Liapunov stability  
 domain  is  calculate for  deterministic  force and shown in Figure1 
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            FIGURE1 : Influence of constant axial force and scale coefficient on critical angular velocity 
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Abstract: Auxetic microstructures have a beneficial effect in dynamic behavior, as it is shown with the example of a plate. 
Further optimal design work is required for specific applications. 
 
1. Introduction  
 

Auxetic structures and materials are metamaterials with negative Poisson’s ratio. Static behavior or even 
complicated auxetic materials resulting from topology optimization in the nonlinear range, including contact 
and plasticity has been studied and verified using numerical homogenization [1].   

Vibration suppression within specific frequencies can be achieved with auxetics. A plate with classical and 
auxetic core is studied numerically using finite elements in order to demonstrate this effect, see Figure 1.  
 

 
FIGURE 1: Plate with classical and auxetic microstructure 

 
The results demonstrate that frequency response is influenced from the microstructure, depending on the 

frequency of excitation, see Figures 2 and 3, respectively.  Extenssion to other dynamical loads, like impacts, 
has not been straightforward [2]. Further study using structural optimization in frequency domain is required, cf. 
[3]. 

 
FIGURE 2: Classical plate, frequency response 0-20 Hz 
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FIGURE 3: Auxetic plate, frequency response 0-20 Hz 
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Abstract: The main goal of this contribution is the solution of geometrically nonlinear problems using the mixed least-
squares finite element method. An investigation of a hyperelastic material law based on logarithmic deformation measures, 
compare e.g. Simo [1] and Miehe and Lamprecht [2], as an elastic basis for further studies within finite elasto-plasticity is 
performed. The basis for the proposed formulation is a classical div-grad first-order system consisting of the equilibrium 
condition and a constitutive equation, see e.g. Cai and Starke [3]. 
 
1. Introduction 
 

In the recent years the complexity of numerical simulations is still increasing. Various modifications and 
extensions of finite element technologies aim for an improvement of the performance and stability of element 
formulations. In this work we present a geometrically nonlinear mixed least-squares finite element method 
(LSFEM) with stresses and displacements as the basic variables. The regarded hyperelastic material is 
formulated in terms of logarithmic deformation measures, compare e.g. Simo [1] and Miehe and Lamprecht 
[2]. Furthermore, the performance of the presented formulation is investigated in a numerical example by a 
comparison of the approximation quality of the formulation. 
 
2. Theoretical framework 
 

The advantages of using LSFEMs lie e.g. in a posteriori error estimator, no restriction to the LBB-condition 
due to the fact that least-squares functionals lead to a minimization problem and an uniform structure for 
almost all kinds of DE, see Cai and Starke [3]. For the construction of least-squares functionals L2(B)-norms 
are applied on the single residuals in general, which leads in the presented work to functionals depending on 
displacements and stresses. The system with i differential equations and U unknowns written in residual form 
(Ri=0) and with the corresponding weightings 𝜔𝑖 is given by 

ℱ(𝑈) = �
1
2

𝑖

∥ 𝜔𝑖𝑅𝑖 ∥𝐿2(𝐵)
2 = ��

1
2

𝐵𝑖

𝜔𝑖
2𝑅𝑖 ⋅ 𝑅𝑖𝑑𝑑. 

For the interpolation of stresses and displacements approximation spaces are declared with m defining the 
interpolation order regarding the approximation of the stresses using vector-valued Raviart-Thomas (RT) 
functions and k denotes the polynomial order for the Lagrange interpolation (P) of the displacements. The 
resulting element structure is therefore given by RTmPk. The considered material model is based on a free 
energy function formulated in terms of logarithmic deformation measures as 
 𝜓(𝑏) = Λ

2
(𝜀1 + 𝜀2 + 𝜀3)2 + 𝜇((𝜀1)2 + (𝜀2)2 + (𝜀3)2)  

with 𝑏 = 𝜆12𝑛1 ⊗ 𝑛1 + 𝜆22𝑛2 ⊗ 𝑛2 + 𝜆32𝑛3 ⊗ 𝑛3 and 𝜀𝑖 = ln (𝜆𝑖 ). 
Therein, the Lame constants are given by Λ and 𝜇. Additionally, the left Cauchy-Green deformation tensor 
b=FFT is introduced in terms of the eigenvector basis 𝑛1,2,3 ⊗ 𝑛1,2,3 and the eigenvalues 𝜆1,2,3 of the stretch 
tensor V following from F=VR where R is a proper orthogonal rotation tensor. The resulting least-squares 
functional reads after reformulation and consideration of an isotropic case for the Kirchhoff stresses τ=𝑃𝐹𝑇 =
2 𝜕𝜕
𝜕𝜕
𝑏 Pas 

ℱ(𝑃,𝑢) =
1
2
�𝜔12(𝐷𝐷𝐷𝑃 + 𝑓) ⋅ (𝐷𝐷𝐷𝑃 + 𝑓)
𝐵

 𝑑𝑑 +
1
2
�𝜔2

2 �𝑃𝐹𝑇 − 2
𝜕𝜓
𝜕𝑏

𝑏� ⋅ �𝑃𝐹𝑇 − 2
𝜕𝜓
𝜕𝑏

𝑏�
𝐵

𝑑𝑑. 

  
3. Numerical Example 
 

The numerical example is given by the Cook's membrane problem where we consider RTmPk element 
formulations with a polynomial order of m=0,1,2 and k = m+1. The geometrical setup, material parameters, 
boundary conditions and the results are given in Figure 1. The results show clearly the raise of performance 
for the higher order elements of the presented classical LSFEM.  
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FIGURE 1: Geometry setup, material parameter and displacement convergence for u2 of the upper right node (48,60) over 
number of equations (neq) of the final system of equations. 
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Abstract: Older and contemporary CAD-based interpolations, either for surfaces or for volume blocks, create 
corresponding sets of basis functions on which finite-element (Galerkin) and global collocation procedures are 
supported. The paper investigates the quality of the relevant numerical solution in several 2D and 3D engineering 
problems. The study deals with Poisson equation and acoustics, as well as with elastostatics and elastodynamics. 
 
1. Introduction 
 

CAD formulas have appeared for the first time by S. Coons (at MIT in the period 1964-1967), whereas the 
coupling between CAD and CAE (mainly FEM) ideas has been later proposed by Gordon and Hall [1]. One of 
the first paper in treating a large domain as a single Coons macroelement is due to Kanarachos and Deriziotis 
[2] for potential problems as well as Kanarachos et al. [3] for static and dynamic elasticity problems. A state-
of-the-art review paper was presented by Provatidis [4].  

 

In a chronological sense, CAD formulas have passed through five main stations, i.e. (i) boundary-only 
Coons interpolation, (ii) internal-point Gordon-Coons interpolation, (iii) Bézier formulation, (iv) B-splines, and 
(v) NURBS. Each of these formulations describes a geometric object, i.e. a curved surface of a volume block. 
The connection between CAD and CAE is immediately understood as follows. For example, in the case of a 
2D elliptic problem, the 3D plot of solution z = u(x,y) versus the axes x and y will be a surface in the space, and 
being such a surface can be mathematically described by a CAD-based interpolation formula. Moreover, since 
each of the abovementioned CAD formulas include a corresponding ‘hidden’ complete set of basis functions, 
these can be used to treat the computational problem, implementing any known computational method such as 
FEM, BEM or collocation techniques.  
 
2. Details and Performance of Macroelement Analysis 
 

Despite the excellent performance of “C-elements” in several potential problems [2], it was later found that 
under certain conditions they may coincide with the well-known Serendipity elements [5], which obviously 
share an incomplete functional basis. Therefore, the boundary-only Coons interpolation [case (i) of CAD 
stations] is not of general applicability and should be applied with reservation. 

 

Instead, Gordon-Coons transfinite interpolation may be successfully used and generally it leads to excellent 
numerical results [6]. Under certain conditions, this formulation coincides with the well-known elements of 
Lagrangian type. To give an idea about the numerical performance of these elements, let us consider the case 
of an elliptical section (2a × 2b = 4 × 2) of a prismatic beam in torsion. Using 48 triangular finite elements 
(with 33 nodal points) the error in the calculation of the torsional rigidity (Jexact = 5.025) is about 30%, whereas 
using 24 quadratic triangular elements (with 6-node each, 65 nodes totally) the error reduces to 5%.  
 
Interestingly, using the same number of boundary descritization (16 equal segments) but now in conjunction 
with a single Lagrangian type macroelement (25 nodes), the error entirely vanishes. Similar behavior has been 
noticed to many other 2D problems [4]. 

 

In this paper we continue the investigation in 3D problems, for which only boundary-only formulations 
have been previously presented [7]. As the equations of elastodynamics split in four sets of acoustic equations 
(due to Helmholtz decomposition: u grad curl= Φ + Ψ


), and due to the fact that simple closed form formulas 

exist in acoustics, a main part of our work is spent on the eigenvalue analysis of a rectangular acoustic cavity 
of dimensions 2.5 ×1.1 × 1.0, as well as a spherical one. For both cases it is shown that boundary-only Coons 
formulation works but a single Lagrangian macroelement is still better. Moreover, it was found that transfinite 
elements of which the number of internal nodes is slightly less than those existing on their boundary, lead 
again to reliable numerical eigenvalues . 

 

Then it was found that the functional set of Bézier (Bernstein) polynomials lead to identical results as those 
obtained using the aforementioned single Lagrangian macroelement, and a theoretical explanation is provided 
as a result of basis change. The collection of numerical results is completed using B-splines and NURBS for 
the same mesh density of breakpoints. 

 

A similar high quality of calculated eigenfrequencies was also found for elastic structures, where the 
numerical solution that was obtained using fine meshes in the commercial code ANSYS was taken as a 
reference. 
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Abstract: This contribution presents some nonlinear behaviors of an underactuated mechanical system under the trajectory 
tracking task. The system is fully controlled with a computed torque algorithm with the pseudoinverse operation and a 
proportional-derivative feedback. Control errors present irregular and chaotic behaviors because of the input force 
limitations. 
 
1. Introduction 
 The dynamic system described by a set of second order ODE in form 

 �̈�(𝑡) = 𝒇1 + 𝒇2𝒖(𝑡) (1) 
with generalized coordinates 𝒒(𝑡) = [𝑞1,𝑞2, … , 𝑞𝑛] and inputs  
𝒖(𝑡) = [𝑢1,𝑢2, … ,𝑢𝑤] is called underactuated if the unbounded control inputs 𝒖(𝑡) cannot produce 
accelerations �̈� in arbitrary direction. This could be verified by the condition rank𝒇2 < dim𝒒. The situation of 
less number of inputs than the number of degrees of freedom is called trivial underactuation. There are many 
systems with the underactuated property, e.g. acrobot, pendubot, cart-pole, the beam-and-ball, inertia-wheel 
pendulum, airplane and multicopter, hovercraft, surface vessel. A recent review of underactuated systems and 
their control is presented by Liu and Yu [1]. 

2. Input coupling problem in trajectory tracking task 

 One of not enough studied problems related to underactuated systems is the input coupling. The system 
described by equation (1) has input coupling if at least one input acts on at least two accelerations. This situation 
causes big problems in the trajectory tracking task. 
 The most popular method of tracking control of underactuated systems with the input coupling effect is 
based on the change of variables that converts this problem into noncoupled. Then some accelerations are 
separately controlled by inputs and some stay without control (selective control method). This contribution 
presents a new method of full state control based on the Moore-Penrose pseudoinverse operation combined with 
a computed torque technique and PD feedback presented by Korczak [2,3]. The inputs are then proposed as 

 𝝉(𝑡) = 𝒇𝟐+ ��̈�(𝑡) − 𝒇1 + 𝑲𝑫�̇�(𝑡) + 𝑲𝑷𝒆(𝑡)� (2) 
where 𝒇𝟐+ is a pseudoinverse of 𝒇𝟐 , 𝒅(𝑡) is a vector of desired trajectory functions, 𝑲𝑫 and 𝑲𝑷 are diagonal 
matrices of coefficients and 𝒆(𝑡) = 𝒅(𝑡) − 𝒒(𝑡) is a vector of tracking errors. Substitution of the control method 
proposed by equation (2) into system of equations of motion (1) yields the errors dynamic equation 
 �̈�(𝑡) + 𝒇𝟐 𝒇𝟐+𝑲𝑫�̇�(𝑡) + 𝒇𝟐 𝒇𝟐+𝑲𝑷𝒆(𝑡) = (𝒇𝟐 𝒇𝟐+ − 𝑰) �𝒇𝟏 − �̈�(𝑡)� (3) 

3. Exemplary underactuated system 

In this paper, one of the simplest underactuated models is described [3]. It can be used for basic representation 
of a hovercraft, rocket or sliding vehicle. Consider a planar rigid body moving on a plane (Fig. 1). The object 
has mass m and inertia 𝐼𝐶 in the center of mass (point C). Coordinates 𝑥(𝑡) and 𝑦(𝑡) describe its position, 𝜑(𝑡) 
denotes angle between the object symmetry line and 𝑋 axis of the global coordinate system 𝑂𝑋𝑋. The vector of 
force 𝑭��⃗  acts on the object in a point away from the point C by distance 𝑎. Constant drag coefficients 𝑐 and 𝑐𝜑 
are used. The equations of motion for the system are as follows 
 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) = |𝐹|cos(𝜑(𝑡) + 𝛽(𝑡)) (4) 
 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) = |𝐹|sin(𝜑(𝑡) + 𝛽(𝑡)) (5) 
 𝐼𝐶�̈�(𝑡) + 𝑐𝜑�̇�(𝑡) = 𝐹(𝑡)𝑎 sin𝛽(𝑡) (6) 
The most interesting behavior of tracking errors occurs in the situation of bounded inputs 𝒖(𝑡). An exemplary 
phase portrait and Poincare map of the angle error are presented on the figure 2. 
 
 
 
 
 
 

53



NONLINEAR BEHAVIORS OF UNDERACTUATED SYSTEMS IN THE TRAJECTORY TRACKING TASKS 

 

 
Figure 1: Object in the global coordinate system 

 

 

 
Figure 2: Phase portrait and Poincare map for the rotation error 
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Abstract: In this paper, Isogeometric tools are employed for the analysis of curved homogenous beams of arbitrary cross 
section, taking into account nonuniform warping, shear deformation effects (shear lag due to both flexure and torsion) and 
cross-sectional distortion considering either a b-spline or a NURB approximation for both the numerical solution of the 
problem and the geometry of the beam. Different numerical methods have been employed and compared such as the Analog 
Equation Method (AEM), a boundary element based method, and the Finite Element Method (FEM).  

1. Introduction-Statement of the problem 

Most of the developed beam theories are usually based on assumptions that require special attention. 
Considering the most fundamental ones, cross sections are assumed 1) to remain plane with 2) their shape 
unchanged during deformation. Regarding the first assumption, this is relaxed by introducing independent 
warping parameters multiplying corresponding warping functions in the displacement field which are presented 
in [1-2]. In order to take into account distortional effects, another set of distortional parameters have been 
considered and multiplied by the corresponding distortional functions. In this paper, Isogeometric tools are 
employed in the AEM [3] in a general form for sixteen one-dimensional boundary value problems described by 
second-order differential equations, such as the nonuniform warping and distortional problem of a homogeneous 
beam, which are reduced to solving the second-order differential equations with respect to the components and 
parameters mentioned above. Comparisons to FEM solutions have been done. The introduction of b-splines or 
NURBS [4] either in the approximation of the AEM fictitious loads or the FEM displacement field as well as the 
geometry of the beam improves accuracy and reduces computational cost. 

2. Conclusions 

A closed one-cell thin-walled box-section beam has been studied. Figure 1 displays the distortional mode of 
the beam formulation shown in Figure 2 for a vertical eccentrically applied load. Figure 2 shows the difference 
in displacement between a beam formulation with sufficiently spaced diaphragms along the length (Figure 2a) 
and with one diaphragm at the free edge (Figure 2b) for a vertical load applied at the centroid of the cross 
section. Total translation at the free edge is almost doubled for the 3-d model with one diaphragm due to 
distortion along the length displayed as the shaded area at the top cross section curved plate (Figure 2b). The 
beam formulation suggested in this work allows an easier handling and post-processing of the curved beam 
model comparing to 3-d FEM solid elements with the same level of accuracy and much less computational 
effort.   
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FIGURE 1: Cross-sectional in-plane deformation of a monosymmetric box-shaped curved beam. 

 

 
(a) 

 
(b) 

FIGURE 2. Deformed shapes of models in FEMAP employing 10976 quadrilateral solid finite 
elements and (a) 13 diaphragms or (b) one diaphragm. 
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Abstract: We will present results of our experimental testing, mathematical modelling, and numerical simulations of steel-
concrete composites beams bonded by traditional steel headed stud shear connectors and flexible or stiff structural 
adhesive layers. The mutual slip across the steel/concrete interface was observed in experiments and taken into account in 
the model. Good agreement of theory and experiment was obtained. 
 
1. Experimental testing 
 

We deal with composite beams of steel and concrete bonded with different types of connectors: traditional steel 
headed stud shear connectors as well as flexible or stiff structural adhesive layers. We have carried out 
laboratory investigations on composite beams of length 3700 mm and the cross-section shown in Fig. 1. The 
composite beams were subjected to a quasi-static three-point bending test, whereas fragments related to them ― 
to a push-out test with compression force, Fig. 2.   

 

 

 

 
Figure 1: Cross-section of composite beam Figure 2: Fragments related to composite beam 

 
Figure 3: P-𝜹  diagrams for ultimate load tests on composite beam with various steel-concrete bonds  
 
Figure 3 shows the experimental results we obtained for ultimate load 3-point bending tests on the composite 
beams with various kinds of steel-concrete bond: beam B1 with concrete slab freely resting on steel girder 
through 5 mm diameter steel round bars, beam B2 with flexible structural adhesive, beams B3 and B4 with 
stiff structural adhesive, B5 with steel headed stud shear connectors with circle steel foot bonded to steel 
girder by stiff structural adhesive, and B6 with steel headed stud shear connectors welded to steel girder. As 
can be seen the highest limit load (296,5 kN) was reached for the composite beam with stiff structural 
adhesive bond.  

 
2. Mathematical modelling and simulation 
 

To account for a mutual slip between the concrete slab and the steel girder we have applied three kinematic 
fields: 𝑤 = 𝑤(𝑥, 𝑡) – vertical displacement, 𝑢1 = 𝑢1(𝑥, 𝑡),  𝑢2 = 𝑢2(𝑥, 𝑡) – horizontal displacements of the 
girder and the slab, respectively. 
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The deformation process of the investigated composite beams is complex because of the nonlinear response of 
component materials and unilateral constraints on the steel/-concrete interface. 
Having applied the finite element discretization to the governing boundary value problem for the composite 
beam, we can formulate it incrementally in time as a sequence of (linear) complementarity problems that take 
the form, for a typical time-step 𝑡𝑘−1 → 𝑡𝑘,  

𝑫𝒙𝑘 = 𝒃𝑘 
(1) 

𝒙𝒌𝟐 ≥ 𝟎,   𝒚 ≥ 𝟎,   𝒙 ∙ 𝒚 = 0 
 

where 𝒙𝒌 is an unknown supervector at time 𝑡𝑘, whose first part 𝒙𝑘1  is not sign-restricted but second part must 
not be negative, 𝒙𝑘2  ≥ 𝟎, and which must be orthogonal to the vector of slack variables 𝒚. Vector 𝒙𝒌  contains 
finite increments of nodal displacements and Lagrange multipliers corresponding to the unilateral, inequality 
constraints. Matrix 𝑫 may, in a general case, depend on time, and the right-hand side vector 𝒃𝑘  is known at 
time 𝑡𝑘.  
The results of numerical solution of (1) will be presented at the conference. The present contribution is an 
extension of Kuczma B. [2] and Kuczma M. [3]. Research problems and solutions in composite structures are 
presented and discussed in Johnson [1] and Ranzi et al. [4], to cite a few, where further references can be found. 
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Abstract: Critical loads of columns under compressive follower forces have been widely discussed in the literature. By 
means of shape optimization, improvements by factors of more than eight could be achieved. However, the obtained solutions 
turn out to be not robust against perturbations. The aim of this paper is to explain this sensitivity effect, basing on a study of 
eigenforms. Further, a robust alternative to the classical optimization approach is proposed. 

1. Introduction 

The study of critical loads of constructions has a long tradition, it goes back to L. Euler, and is still of 
ongoing interest [3], due to new designs and new challenges as e.g. in wind turbines. In particular, variable 
forcing, coupling effects, passive and active control [4] are important issues. The maximization of critical loads, 
but also the avoidance of certain undesirable eigenfrequencies, earn a lot of attention. In this context – as well as 
in numerous others – it was observed that the optimization of shape and other construction parameters frequently 
leads to negative effects. In particular, the robustness against perturbations of design variables and of the loading 
conditions may be diminished. Several authors obtained astonishing critical loads for Beck’s column, see Fig. 1, 
middle, but the results could not be confirmed by different numerical methods. In [2] we reported a severe drop 
in the critical load after rounding profile data from double to single floating point numbers, compare Fig. 2. 

                 
Fig. 1: Loading schemes of Euler, Beck and Reut 

 
Fig. 2: Drop of critical force due to change of eigenform  

 

The key to an understanding of the mentioned effects lies in the analysis of eigenforms of the considered 
constructions under loads close to the critical one. As a rule, the characteristic curves in the 𝑃-𝜔-plane become 
higher, but also more and more slender during the optimization process. Typically, in the vicinity of maximizers, 
one can find configurations, where neighbouring branches touch, see Fig. 3. This leads to catastrophic changes in 
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the topology of root curves, where a new, considerably lower local maximizer appears, with the corresponding 
eigenfrequency jumping and a different eigenform at the new critical point.  

 
Notice that in the classical Euler case, Fig. 1, left, for dead load frozen at a certain low level, with frequency 

increasing from zero, one passes through consecutive resonances, where the number of nodes of the eigenforms 
is always the same as their counter indicates. However, this property is violated, if load is increased, with 
different thresholds for other kinds of loading, such as Beck, Reut or Lipmann cases. This effect becomes more 
evident, when the shape of the column, i.e. its thickness profile function, is optimized, so that the critical load of 
a column with uniform thickness is by far exceeded. 

We propose a modification of the way nodes are defined and hence calculated. In fact, we look at changes of 
the sign of the curvature instead of the sign of the displacement itself. This definition is consistent with the 
classical approach, since in the Euler case the eigenforms are sinusoidal, and zeros of the function and its second 
derivatives are identical. However, in corresponding forms of oscillations in other cases we have only one point 
with zero displacement but also two arcs of opposite oriented curvatures, which classifies it as second eigenform.  

             
Fig. 3 Root curves, complex, optimal and suboptimal 

In order to obtain practically applicable results for critical loads, we propose to evaluate the worst case load 
(WCL). Assuming a maximal tolerable measure of deviation from the given form, parameters and loading 
conditions, each given configuration is assigned the least critical load over all neighbouring configurations 
within this tolerance. This approach makes optimization more expensive, and it gives considerably smaller 
optimal loads. The results, however, are robust to (sufficiently small) manufacturing errors and disturbances 
during the exploitation of the considered construction. 
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ABSTRACT 
In the present study, we derive general solutions for characteristic two-dimensional (2D) indentations within the 

framework of the generalized continuum theory of couple-stress elasticity. The results show significant departure from the 
predictions of classical elasticity and it thus seems inadequate to analyze indentation problems in microstructured complex 
materials employing only classical Contact Mechanics. 

 
1. Introduction 
 In the present study, we derive general solutions for two-dimensional (2D) plane strain contact 
problems within the framework of the generalized continuum theory of couple-stress elasticity [1-2] – see 
Figure 1. This theory introduces characteristic material lengths and is able to capture the associated scale effects 
that emerge from material microstructure which are often observed in indentation tests used for the material 
characterization. The contact problems are formulated in terms of singular integral equations using a Green’s 
function approach [3]. The pertinent Green’s function obtained through the use of integral transforms 
corresponds to the solution of the 2D Flamant-Boussinesq half-plane problem in couple-stress elasticity. The 
results show a strong dependence upon the microstructural characteristics of the material when this becomes 
comparable to the characteristic dimension of the problem, which in the case of an indentation test is the contact 
length/area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Definition of the problem of a (a) point load applied to an elastic half-plane (b) flat punch (c) 
cylindrical rigid body and (d) rigid wedge indenting an elastic half-plane. 

 
Our objective is the determination of the contact-stress distribution below the rigid indentor and the 

determination of the associated contact length. Suppose that the surface of the half-plane is subjected to a 
distributed normal load ( )p ξ  per unit length. The stress and displacement fields can be found by superposition 
using the Flamant-Boussinesq solution as the pertinent Green’s function – i.e. treating distributed load as the 
limit of a set of point loads of magnitude ( )p dξ ξ . 

In view of the above, the tangential gradient of the normal displacement at the surface of the half-plane 
assumes the following form: 
 

( ) ( ) ( ) ( )1
1

1
1

1 CPV
3 2

p s dk
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x
N x
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ν pµ
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−
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with bx x= , s s b= . Note that the first integral in the integral equation (1) is interpreted in the Cauchy 

(a) (b) 

(c) (d) 
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principal value sense (CPV). In addition, the regular kernel is defined as 
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with bζ ξ=  and q b=  . 
 
The numerical solution of the singular integral equation is accomplished by means of the collocation 

method for each indentor profile – further details can be seen in [4, 5]. 
Our results exhibit significant departure from the predictions of classical elasticity. Regarding the 

concentrated load problem, we note that although the displacement components exhibit the same asymptotic 
behavior as in the classical theory, their detailed structure is quantitatively different in couple-stress elasticity. 
Moreover, in marked contrast with the classical theory, the rotation becomes bounded when calculated in the 
context of couple-stress theory. The departure from the classical elasticity is more significant near the point of 
the application of the load, where the rotation / strain gradients are more pronounced, while as we move further 
from the point of the application of the load the differences decay and the couple-stress solution approaches the 
classical.Regarding the cylindrical and wedge indentation problems, it is shown that for decreasing ratio /b   
the pressure below the indentor increases significantly compared to the classical elasticity predictions - Figure 2. 
Moreover, it is observed that as the characteristic material length   increases the contact width b  decreases. 

In light of the above, the elastic indentation of microstructured solids, which introduces a more complex 
loading situation, may also act as a good alternative to common tests like simple shear and pure bending in order 
to identify the characteristic material length and provide more accurate information closer to real-life conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Dependence of the dimensionless average pressure ,/av av clasp p  upon the ratio / b  and the Poisson’s 

ratio ν . 
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Abstract: The MAEM (Meshless Analog Equation Method), a purely meshless method, is developed for buckling 
of thick Mindlin’s plates resting on biparametric elastic foundation. The solution is approximated by new RBFs, 
which result from the integration of the analog equations. Increased accuracy is achieved using optimal values of 
the involved arbitrary shape parameter. The examples demonstrate the efficiency of the method. 

1. Introduction 
For the buckling analysis of moderately thick plates of uniform thickness h based on Mindlin’s 

theory and resting on biparametric (Pasternak-type) elastic foundations the following differential 
equations are used [1]: 
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where w  is the transverse deflection, ,x yφ φ  the rotations of the normal about y  and x  axes; E, G, ν ,
3 212(1 )D Eh ν= − , Young’s modulus, shear modulus, Poisson’s ratio and the plate flexural rigidity;

2 12κ π=  the shear correction factor for Mindlin’s plate theory, 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 the Laplace operator 

in Cartesian coordinates; xN , yN , xyN  the in-plane forces per unit length inside the domain of the 

plate resulting from the pre-buckled state [2] and fk , fG  the subgrade reaction coefficient and the 
shear modulus of the foundation. The boundary conditions are given in Yiotis and Katsikadelis [3], 
which are taken homogeneous for buckling. 

The boundary value problem (1) together with the boundary conditions is solved using the MAEM 
as in Katsikadelis [4-5]. The analog equations are : 

     2
1( , )x b tfÑ = x ,             2

2( , )y b tfÑ = x                2
3( , )w b tÑ = x  (2a,b,c) 

where ( )ib x  1,2, 3i =  are the unknown fictitious loads. Using the procedure described in Yiotis and 
Katsikadelis [3], we obtain the expressions for the displacements: 
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where jr = -x x ; K  and L  the domain and boundary nodal points. The derivatives are obtained 
by direct differentiation of Eqs. (3). Finally, applying Eqs. (1) at the domain nodal points and the 
boundary conditions at the boundary nodal points and replacing the involved values of the 
displacements and their derivatives from Eqs. (3), we obtain the buckling equation: 

 det( ) 0l- =A B  (4) 
where A  and B  are known (3 3 ) (3 3 )K L K L+ ´ +  matrices. Equation (4) yields the values of the 

buckling parameter l  and the coefficients α( )i
j .The buckling modes are computed from Eqs. (3). The 
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critical value 2
cr xS S a D=  of a simply supported square plate of length a  loaded with the in-plane 

force xS  along 0x =  and x a=  for 0.20h a =  and foundation parameters 4
F fK k a D= , 

2
F fG G a D=  is shown in Table 1 as compared with an analytical solution [1]. 

h a  0FK = , 0FG =  100FK = , 10FG =  1000FK = , 100FG =  

 [1] Present [1] Present [1] Present 

0.20 32.4414 32.5323 55.0289 55.6175 174.976 175.5923 

Table 1. Critical value for 2
cr xS S a D=  ( 0.30n = ). 
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Abstract: The paper presents an example of low-floor trams simulation tests. The tram under study was unique 
because of using the system of independently rotating wheels in the bogie[2]. In this paper the dynamic behavior of the 
vehicle was examined, and the phenomenon of wheels and rails wear during the rolling contact was subjected to the 
identification. For this purpose a dedicated computational model was built in Matlab environment, taking into account the 
phenomenon of kinematic pair wear using Archard model. 

 
1.          Introduction 

 

In case of two solid bodies contact, literature examines many theories taking into account phenomena 
in the contact area on a surface. Restraining force (frictional force) is directly proportional to the pressure force, 
and depends on the parameters  of   the   rubbing  surfaces:  material  type,   surface  roughness,  the 
temperature of the surroundings, and environment properties (occurrence of factors that reduce or increase the 
friction), and the state of movement (sliding friction, rolling  friction).  In  the  case  of  metals  and  their  
technical  alloys,  the  forces associated with the contact area generate stresses, giving in consequence the elastic 
deformation of surface. After crossing the plasticity limit the strengthening of material can occur by distortion 
of crystal structure, which translates into an increasing of hardness and strength, and reducing the plastic 
properties. As a result of internal friction and internal energy dissipation due to the tension and compression, 
the relation describing the deformation as a stress function is non- linear, and takes the form of hysteresis, 
called elastic hysteresis. After dividing it by the elastic deformation energy result represents the vibration 
reduction capability. The tribological material wear due to the friction it's caused by abrasion, cracking, material 
defects, adhesion of the contact surfaces and tribo-chemical reactions [2]. 

 

2.          The method and results 
 

During the study of the tribological wear phenomena, a lot of computational models were used. The 
classical approach describes the use of an adhesive model by Archard [1], wherein the volume and weight of 
material wear (in wear equation) describes the relation:   

 
    

where:     
 Vw - the volume of wheel material wear, [m3], 

mw - mass removed due to wear, [µg/mm2]        

 

 
FIGURE 1: Chart of wear the wheels in bogie A, at a speed of 40 km/h; tram loaded, very good condition of the track, linear 

scale [2] 
 
In the study of dynamics, modeling of rolling contact with the rail wheels, and the  calculation  of  forces  

acting  at  the  contact  area  is  crucial.  To  make  the calculations  of  contact  forces  according  to  the  full  
theory  for  non-conformal contacts (adhesion area of solids is not large), commonly used algorithm for 
calculating the tangential forces - Fastsim developed by Kalker [4] is used. Fastsim is also successfully used for 
wear prediction of wheel and rail profiles - Chudzikiewicz [3]. 
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In the simulation tests, there was no wear of the wheel rolling plane greater than 6.12e-7 mm, which is 
consistent with the data encountered in the literature, what indicates that wear should be smaller than 1 mm / 
100 000 km. 

 

3.          Summary 
 

Simulation studies were designed to evaluate the dynamics of the vehicle under various operating 
conditions, depending on: state of the track, its configuration and speed of the vehicle. Multi-variant 
calculations, that incorporate different operating scenarios, allowed to evaluate the wear of wheel rolling 
surface, preceding the introduction to exploitation of the new model of tram bogie, equipped with independently 
rotating wheels. 
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Abstract: Cellular solids show great potential for applications as response modification elements as well as load bearing 
elements within structural systems, due to their ultra-light properties and mechanical behavior. A light-weight cellular 
solid shear wall could work efficiently for vibration mitigation in large scale structural systems.  Finite Element models 
are developed to predict the stiffness, strength, and energy dissipation effectiveness of shear wall panels with cellular 
solids.  
 
1. Introduction  
 

Shear walls are structural members used by engineers to control displacements by providing additional 
stiffness to bare frame structures. A lot of effort has been spent to increase the ductility of conventional 
Reinforced Steel Shear Wall (RSSW) system, so as to enhance the energy dissipation capacity of shear wall 
under earthquake excitation. Such a system is the Steel Plate Shear Wall system (SPSW) and its 
modifications (e.g. [1], [2], [3]) which can limit drift effectively and can dissipate large amount of energy.  
 

The cellular structure of the shear wall essentially eliminates the potential of out of plane buckling which is 
prevailing in solid steel-plate shear wall systems.  In addition, macroscopically, the cellular structure is 
responsible for the observed pure shear behavior of the panel. A parametric study to quantify the mechanical 
properties of the cellular shear wall panels is conducted as a function of the thickness and length of the 
individual cell walls, and the orientation angle of the vertical cell walls.  Finally, to evaluate the performance 
of a structure fitted with cellular shear wall system, a model of a three-story structural frame is developed and 
analyzed under seismic excitation 
 

This work studies the static and dynamic behavior of shear walls with cellular solids.  The influence of 
cell geometry on the behavior of cellular solids, when subjected to monotonic and cyclic shear loading, is 
investigated. (see Figure 1) 
 

 
 
 
 
 
 
 
 
 

FIGURE 1. Cellular-solid shear wall panel within framed structural system.  Geometrical characteristics of regular 
hexagonal honeycomb (for l=h and θ=30o regular honeycomb) and honeycomb with vertical walls oriented by angle φ. 

 
The regular hexagonal honeycomb cell is considered as a unit cell of the proposed cellular-solid shear 

walls.  A number of shapes based on the regular hexagonal honeycomb cell are explored in studying the 
behavior of shear wall elements with cellular architecture (see Figure 1).  Their effect on the strength and 
energy dissipation properties of shear walls is quantified by analyzing detailed finite element models of a 
control representative volume element (RVE).  
 

The behavior of a RVE (see Figure 2) can be used in a homogenization attempt, where an equivalent solid 
material element can be utilized in the place of the cellular-solid. This engineering simplification could greatly 
reduce computational effort and make numerical analysis more efficient when members (shear walls, response 
modification devices, etc.) consisting of cellular solids are to be used in full scale structural systems. 
Furthermore, considering the nature of cellular solids (periodicity) and the aforementioned “homogenization” 
approximation the behavior of a representative volume element of a cellular material, could be accurately 
captured by “spring” like hysteretic models. 
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FIGURE 2. Hysteretic behavior of cellular solids under cyclic loading, and buckling-mode deformations of a column of 
cells with φ=30o when their cell walls are in compression. 

 

 
The effectiveness of the shear walls made of cellular-solids was shown from the comparison of the 

responses of a three-story three-bay steel frame under the seismic motion of El-Centro. 
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